A Physical Model for the Observed Dependence of the Metal-Semiconductor Work Function Difference on Substrate Orientation

  • Hisham Z. Massoud
  • James D. Plummer

Abstract

The metal-semiconductor work function difference Ø ms in the Al—SiO2—Si system has been measured using capacitance-voltage (C-V) measurements, and it was found to be orientation dependent, with the (100) orientation having a Ø ms larger than that of (111) by — 0.250 V. This result is in agreement with previous studies which showed that Ø ms is both orientation and processing dependent. These observations are interpreted in terms of the contribution of dipole moments resulting from partial charge transfer in interface bonds to the Ø ms . Such charge transfer takes place in bonds at the Si—SiO2 and gate—SiO2 interfaces and in their vicinity. The contribution of these dipole moments to the measured Ø ms has been calculated from first principles, and the results predict the orientation dependence of Ø ms , and provide a physical model for further investigating its processing dependence. Measurements and process modeling of charge components in metal-oxide-semiconductor (MOS) devices will be discussed.

Keywords

Interface Bond Substrate Orientation Substrate Doping Partial Charge Transfer Interface Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley-Interscience, John Wiley Sons, New York, 1981.Google Scholar
  2. 2.
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley Sons, New York, 1982.Google Scholar
  3. 3.
    B. E. Deal, E. H. Snow, and C. A. Mead, J. Chem. Phys. Sol. 27, 1873 (1966).CrossRefGoogle Scholar
  4. 4.
    W. M. Werner, Solid-State Electron. 17, 769 (1974).CrossRefGoogle Scholar
  5. 5.
    S. Kar, Solid-State Electron. 18, 169 (1975).CrossRefGoogle Scholar
  6. 6.
    S. Kar, Solid-State Electron. 18, 723 (1975).CrossRefGoogle Scholar
  7. 7.
    H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).CrossRefGoogle Scholar
  8. 8.
    L. A. Kasprzak and A. K. Gaind, in The Physics of Si02 and Its Interfaces, S. T. Pantelides, Ed., Pergamon Press, New York, 1978.Google Scholar
  9. 9.
    A. K. Gaind and L. A. Kasprzak, Abstract No. 344, Extended Abstracts Vol. 77–2, The Electrochemical Society Fall Meeting, Atlanta, Georgia, Oct. 9–14, 1977.Google Scholar
  10. 10.
    A. K. Gaind and L. A. Kasprzak, Solid-State Electron. 22, 303 (1979).CrossRefGoogle Scholar
  11. 11.
    K. Haberle and E. Fròschle, J. Electrochem. Soc. 126, 878 (1979).CrossRefGoogle Scholar
  12. 12.
    L. A. Kasprzak and A. K. Gaind, IBM J. Res. Develop. 24, 348 (1980).CrossRefGoogle Scholar
  13. 13.
    T. W. Hickmott, in The Physics of MOS Insulators, G. Luckovsky, S. T. Pantelides, and F. L. Galeener, Eds., Pergamon Press, New York, 1980.Google Scholar
  14. 14.
    T. W. Hickmott, J. Appl. Phys. 51, 4269 (1980).CrossRefGoogle Scholar
  15. 15.
    N. W. Jones and M. R. Gulett, Abstract No. 523, Extended Abstracts Vol. 80–2, The Electrochemical Society Fall Meeting, Hollywood, Florida, Oct 5–10, 1980.Google Scholar
  16. 16.
    H. M. Przewlocki, S. Krawczyk, and A. Jakubowski, Phys. Stat. Sol. (a) 65, 253 (1981).CrossRefGoogle Scholar
  17. 17.
    S. K. Krawczyk, H. M. Przewlocki, and A. Jakubowski, Revue Phys. Appl. 17, 473 (1982).CrossRefGoogle Scholar
  18. 18.
    H. M. Przewlocki, in Physics of Semiconductor Devices, S.C. Jain and S. Radhakrishna, Eds., Halsted Press, John Wiley Sons, 1982.Google Scholar
  19. 19.
    R. R. Razouk and B. E. Deal, Abstract No. 376, Extended Abstracts Vol. 81–2, The Electrochemical Society Fall Meeting, Denver, Colorado, Oct 11–16, 1981.Google Scholar
  20. 20.
    R. R. Razouk and B. E. Deal, J. Electrochem. Soc. 129, 806 (1982).CrossRefGoogle Scholar
  21. 21.
    H. Z. Massoud, Thermal Oxidation of Silicon in Dry Oxygen -Growth Kinetics and Charge Characterization in the Thin Regime, Tech. Rep. No. G502–1, Stanford Electronics Laboratories, Stanford University, Stanford, CA, June 1983.Google Scholar
  22. 22.
    A. I. Akinwande and J. D. Plummer, J. Electrochem. Soc. 134, 2297 (1987).CrossRefGoogle Scholar
  23. 23.
    T. Sakurai and H. D. Hagstrum, Phys. Rev. B12, 5349 (1975).CrossRefGoogle Scholar
  24. 24.
    T. Sakurai and H. D. Hagstrum, Phys. Rev. B14, 1593 (1976).CrossRefGoogle Scholar
  25. 25.
    P. M. Solomon and D. J. DiMaria, J. Appl. Phys. 52, 5867 (1981).CrossRefGoogle Scholar
  26. 26.
    H. Z. Massoud, Mat. Res. Soc. Symp. Proc. 105, (1988).Google Scholar
  27. 27.
    H. Z. Massoud, J. Appl. Phys. 63, 2000 (1988).Google Scholar
  28. 28.
    R. T. Sanderson, Science 114, 670 (1951).CrossRefGoogle Scholar
  29. 29.
    R. T. Sanderson, Inorganic Chemistry, Reinhold, New York, 1967.Google Scholar
  30. 30.
    P. Perfetti, C. Quaresima, C. Coluzza, C. Fortunato, and G. Margaritondo, Phys. Rev. Lett. 57, 2065 (1986).CrossRefGoogle Scholar
  31. 31.
    F. J. Grunthaner an4 P. J. Grunthaner, Materials Science Reports 1, 65 (1986).CrossRefGoogle Scholar
  32. 32.
    R. S. Bauer and R. Z. Bachrach, Appl. Phys. Lett. 37, 1006 (1980).CrossRefGoogle Scholar
  33. 33.
    B. E. Deal, J. Electrochem. Soc. 121, 198C (1974).Google Scholar
  34. 34.
    M. Revitz, S. I. Raider, and R. A. Gdula, J. Vac. Sci. Technol. 16, 345 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Hisham Z. Massoud
    • 1
  • James D. Plummer
    • 2
  1. 1.Department of Electrical EngineeringDuke UniversityDurhamUSA
  2. 2.Center for Integrated SystemsStanford UniversityStanfordUSA

Personalised recommendations