The Stoichiometry and Structure of the Si/SiO2 Interface: Ion Scattering Studies

  • L. C. Feldman

Abstract

High energy ion scattering combined with particle channeling is an interfacial probe which reveals information on the stoichiometry and structure of an amorphous/crystalline interface.1,2 In early studies the technique was extensively applied to probing the Si/SiO2 interface in a standard channeling geometry.3–6 The original interpretation of these results was somewhat confused by a lack of understanding of the basic surface interactions associated with MeV channeling.3 Theory and experiments on atomically clean surfaces quickly resolved the difficulty.1 The final results of these early studies were as follows: The oxide is stoichiometric to within ~5Å of the interface and there is either: 1) one monolayer of reconstructed Si and ~5Å of nonstoichiometric oxide or 2) two monolayers of reconstructed Si. These results held for Si(100) and Si(110).

Keywords

Surface Reconstruction Atomic Displacement Clean Surface Substitutional Site Strained Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. C. Feldman, J. W. Mayer, S. T. Picraux, Materials. Analysis by Ion Channeling, (Academic Press, N.Y. 1982 ).Google Scholar
  2. 2.
    L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, ( North Holland, N.Y. 1986 ).Google Scholar
  3. 3.
    T. W. Sigmon, W. K. Chu, E. Lugujjo and J. W. Mayer, Appl. Phys. Let. 24, 105 (1970).CrossRefGoogle Scholar
  4. 4.
    L. C. Feldman, I. Stensgaard, P. J. Silverman and T. E. Jackman, in The Physics of SiO 2 and Its Interfaces, ed. by S. T. Pantelides ( Pergamon, New York, 1978 ).Google Scholar
  5. 5.
    T. E. Jackman, J. R. MacDonald, L. C. Feldman, P. J. Silverman and I. Stensgaard, Surf. Sci. 100, 35 (1980).CrossRefGoogle Scholar
  6. 6.
    R. Haight and L. C. Feldman, J. Appl. Phys. 53, 4884 (1982).CrossRefGoogle Scholar
  7. 7.
    L. C. Feldman. P. J. Silverman, J. S. Williams, T. E. Jackman and I. Stensgaard, Phys. Rev. Lett., 41, 1396 (1978).CrossRefGoogle Scholar
  8. 8.
    N. W. Cheung, L. C. Feldman, P. J. Silverman, I. Stensgaard, Appl. Phys. Leu. 35, 859 (1979).CrossRefGoogle Scholar
  9. 9.
    A. Ourmazd, D. W. Taylor, J. A. Rentschler and J. Bevk, Phys. Rev. Lett. 59, 213 (1987).CrossRefGoogle Scholar
  10. 10.
    R. J. Culbertson, Y. Kuk and L. C. Feldman, Surf. Sci. 167, 127 (1986).CrossRefGoogle Scholar
  11. 11.
    A. D. F. Kahn and J. A. Eades, Phys. Rev. B, 36, 6532 (1987).CrossRefGoogle Scholar
  12. 12.
    R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoves and E. J. van Loenen, Phys. Rev. Lett. 55, 2332 (1985).CrossRefGoogle Scholar
  13. 13.
    A. E. White, K. T. Short, J. L. Batstone, D. C. Jacobson, J. M. Poate and K. W. West, Appl. Phys. Let. 50, 19 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • L. C. Feldman
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations