Thermal Oxidation of Silicon in an Afterglow Gas

  • Andrew M. Hoff
  • Jerzy Ruzyllo

Abstract

Low temperature thermal oxidation of silicon is desired for many reasons in device manufacture. Thermal activation alone at temperatures below 700 °C is ineffective. The proposal that other oxidants might act via parallel mechanisms instigated this study in which the thermal process is enhanced by the presence of non-thermally produced oxidants in the afterglow of a microwave gas discharge. Film growth in atmospheric O2, in an O2 afterglow at 1 Torr, and in an O2/NF3 afterglow at 1 Torr is studied. Fluorine containing afterglows are found to enhance film growth at 700 °C compared with that obtained in O2 afterglows, however, at lower temperatures the apparent enhancement vanishes. The effect is attributed to the existence of a concurrent etching reaction. Further, the electrical properties of films grown in the various regimes are discussed.

Keywords

Film Growth Microwave Discharge Interface Trap Density Thermal Oxidation Process Oxide Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ghez and Y. J. van der Meulen, J. Electrochem. Soc., 119, 1100 (1972).CrossRefGoogle Scholar
  2. 2.
    J. Blanc, Appl. Phys. Lett., 33, 424 (1978).Google Scholar
  3. 3.
    E. A. Irene, Appl. Phys. Lett., 40, 74 (1982).Google Scholar
  4. 4.
    A. M. Hoff and J. Ruzyllo, Appl. Phys. Lett., accepted for publication.Google Scholar
  5. 5.
    M. Morita, T. Kubo, T. Ishihara, and M. Hirose, Appl. Phys. Lett., 45, 1312 (1984).CrossRefGoogle Scholar
  6. 6.
    P. J. Wright, M. Wong, and K. T. Saraswat, Int. Elect. Dey. Mtg. 1987, Technical Digest, 574 (1987).Google Scholar
  7. 7.
    J. R. Ligenza, J. Appl. Phys., 36, 2703 (1965).CrossRefGoogle Scholar
  8. 8.
    A. E. Ray and A. Reisman, J. Electrochem. Soc., 128, 2467 (1981).Google Scholar
  9. 9.
    R. P. H. Chang, C.C. Chang, and S. Darack, Appl. Phys. Lett., 36, 999 (1980).CrossRefGoogle Scholar
  10. 10.
    W. Kern, Semicond. Int., 7 (4), 94 (1984).Google Scholar
  11. 11.
    M. Morita, S. Aritome, M. Tsukude, and M. Hirose, Int. Elect. Dev. Mtg. 1984, Technical Digest, 144 (1984).Google Scholar
  12. 12.
    M. A. A. Clyne and I. F. White, Chem. Phys. Lett., 6, 465 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Andrew M. Hoff
    • 1
  • Jerzy Ruzyllo
    • 1
  1. 1.Center for Electronic Materials and Devices Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations