Antibiotic-Containing Polyurethanes for the Prevention of Foreign-Body Infections

  • B. Jansen
  • S. Schareina
  • U. Treitz
  • G. Peters
  • F. Schumacher-Perdreau
  • G. Pulverer

Abstract

The incorporation of antibiotics (clindamycin, flucloxacillin, vancomycin) into polyurethanes to obtain drug delivery devices is described. The drug release kinetics of the films was determined in a modified bioassay. Polyurethane films containing clindamycin or vancomycin show a high initial release rate, and drug release is observed up to 5–7 days. Flucloxacillin-containing polymer films exhibit a more constant drug release profile with a drug release lasting at least for 15 days or longer. Radiation methods as well as glow discharge techniques were applied to antibiotic-loaded films in order to modify drug release characteristics. Effectiveness of the devices to prevent adhesion or to kill adherent bacteria was tested with in vitro bacterial adhesion experiments. Initial adhesion to the antibiotic-loaded films is not prevented, but in case of clindamycin- and flucloxacillin-containing films a considerable reduction of adherent viable cells from 105 to 101 is observed.

Keywords

Drug Release Glow Discharge Adherent Bacterium Initial Adhesion Drug Release Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Sugarman & E. J. Young, “Infections Associated with Prosthetic Devices”, Boca Raton, CRC Press, 1984.Google Scholar
  2. 2.
    R. M. Kluge, F. M. Calia, J. S. McLaughlin & R. B. Hornick, JAMA, 230, 1415 (1974).CrossRefGoogle Scholar
  3. 3.
    G. Peters, F. Schumacher-Perdreau & G. Pulverer, Med. Microbiology, 5, 209 (1986).Google Scholar
  4. 4.
    G. Peters & G. Pulverer, J. Antimicrob. Chemother., 14, Suppl. D, 67 (1984).CrossRefGoogle Scholar
  5. 5.
    B. Jansen, G. Peters & G. Pulverer, J. Biomat. Appl., Vol. 2, No. 4, 520 (1988).CrossRefGoogle Scholar
  6. 6.
    B. Jansen, S. Schareina, H. Steinhauser, G. Peters, F. Schumacher-Perdreau & G. Pulverer in: “Applied Bioactive Polymeric Materials”, C. G. Gebelein, C. E. Carraher, Jr. & V. Foster, Eds., Plenum Publ. Corp., New York, 1989, p. 97.Google Scholar
  7. 7.
    E. Straube, G. Naumann, H. Klein & F. Klein, Zbl. Chir., 111, 276 (1980).Google Scholar
  8. 8.
    B. Jansen, H. Steinhauser & W. Prohaska, Adv. Biomaterials, Vol. 6, 207 (1986).Google Scholar
  9. 9.
    R. C. Evans & C. J. Holmes, Antimicrob. Agents Chemother., 31 (6), 889 (1987).CrossRefGoogle Scholar
  10. 10.
    A. G. Gristina, C. D. Hobgood, L. X. Webb & Q. N, Myrvik, Biomaterials, 8, 423 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Jansen
    • 1
  • S. Schareina
    • 1
  • U. Treitz
    • 1
  • G. Peters
    • 1
  • F. Schumacher-Perdreau
    • 1
  • G. Pulverer
    • 1
  1. 1.Hygiene-Institute, University of CologneCologne 41Germany

Personalised recommendations