Advertisement

The Controlled Release of 5-Fluorouracil from Annealed Monolithic Systems

  • Charles G. Gebelein
  • Mark Chapman
  • Michele K. Davison
  • Thomas E. Gober

Abstract

For many years we have been studying the preparation, polymerization and copolymerization of monomers, such as [EMCF] or [EMCM], which contain the anti-cancer drugs 5-fluorouracil [5FU] and 6-methylthiopurine [6MTP], respectively. These polymers and copolymers release the drugs in a zero-order kinetic pattern. In our recent research, 5-fluorouracil [5FU] was monolithically distributed in a poly(caprolactone) [PC] matrix and the release profiles, into water, were studied as a function of the internal phase and temperature. Good, linear plots of the total release against the square root of time (Higuchi kinetics) were followed by these monolithic systems up to about 25–30% [5FU] internal phase. Beyond that point, the systems showed a marked curvature in the release profiles. In the present paper, the effect of annealing the [FUPC] systems was also investigated. These annealed samples showed the same basic release profiles as the unannealed samples, except the release times were much longer (i.e., the slopes of the Higuchi plots were smaller). Monolithic systems that would have released the [5FU] in less than a week, sometimes required more than two months after annealing. Our studies have shown that much greater amounts of [5FU] can be incorporated into the copolymeric systems than into monolithic systems. E.g., an [EMCF] homopolymer contains 45+% [5FU] and still exhibits zero-order kinetics. The potential utility of such systems with higher concentrations and extended time release ranges in long term chemotherapy is obvious.

Keywords

Release Profile Methyl Acrylate Butyl Acrylate Internal Phase Copolymer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Gebelein, R. M. Morgan, R. Glowacky & V. Baig in: “Biomedical & Dental Applications of Polymers,” C. G. Gebelein & F. F. Koblitz, Eds., Plenum Publ. Corp., New York, 1981, p. 191.Google Scholar
  2. 2.
    C. G. Gebelein in: “Biological Activities of Polymers,” C. E. Carraher, Jr. & C. G. Gebelein, Eds., American Chemical Society, Washington, DC, 1982, p. 193.CrossRefGoogle Scholar
  3. 3.
    C. G. Gebelein, Proc. Polym. Mat. Sci. Eng., 51, 127–131 (1984).Google Scholar
  4. 4.
    R. R. Hartsough & C. G. Gebelein, Proc. Polym. Mat. Sci. Eng., 51, 131–135 (1984).Google Scholar
  5. 5.
    R. R. Hartsough & C. G. Gebelein in: “Polymeric Materials in Medication,” C. G. Gebelein & C. E. Carraher, Jr., Eds., Plenum Publ. Corp., New York, 1985, pp. 115–124.Google Scholar
  6. 6.
    C. G. Gebelein & R. R. Hartsough in: “Controlled Release of Bioactive Materials, 11th International Symposium,” W. E. Meyers & R. C. Dunn, Eds., Controlled Release Society, Lincolnshire, IL, 1984, pp. 65–66.Google Scholar
  7. 7.
    C. G. Gebelein, T. Mirza & M. Chapman, Proc. Polym. Mat. Sci. Eng., 57, 413–416 (1987).Google Scholar
  8. 8.
    C. G. Gebelein, R. R. Hartsough & T. Mirza in: “Controlled Release of Bioactive Materials, 13th International Symposium,” I. A. Chaudry & C. Thies, Eds., Controlled Release Society, Lincolnshire, IL, 1986, pp. 188–189.Google Scholar
  9. 9.
    C. G. Gebelein, T. Mirza & R. R. Hartsough in: “Controlled Release Technology, Pharmaceutical Applications,” P. I. Lee and W. R. Good, Eds., Symp. Series #348, American Chemical Society, Washington, DC, 1987, pp. 120–126.CrossRefGoogle Scholar
  10. 10.
    C. G. Gebelein, M. Chapman & T. Mirza in: “Applied Bioactive Polymeric Systems,” C. G. Gebelein, C. E. Carraher & V. Foster, Eds., Plenum Publ., New York, 1988, pp. 151–163.CrossRefGoogle Scholar
  11. 11.
    C. G. Gebelein, M. Davison, T. Gober & M. Chapman, Proc. Polym. Mat. Sci. Eng., 59, 798–802 (1988).Google Scholar
  12. 12.
    T. Higuchi, J. Pharm. Sci., 59, 353 (1961).Google Scholar
  13. 13.
    M. Yoshida, M. Kumakura & I. Kaetsu, Polymer, 19, 1375 (1978).CrossRefGoogle Scholar
  14. 14.
    M. Yoshida, M. Kumakura & I. Kaetsu, Polymer, 11, 775 (1979).CrossRefGoogle Scholar
  15. 15.
    I. Kaetsu, M. Yoshida, M. Kumakura, A. Yamada & Y. Sakurai, Biomaterials, 1, 17 (1980).CrossRefGoogle Scholar
  16. 16.
    I. Kaetsu, M. Yoshida & A. Yamada, J. Biomed. Mater. Res., 14, 185 (1980).CrossRefGoogle Scholar
  17. 17.
    R. L. Dunn, J. W. Gibson, B. H. Perkins, J. M. Goodson & L. E. Laufe in “Polymeric Materials in Medication,” C. G. Gebelein & C. E. Carraher, Jr., Eds., Plenum Publ., New York, 1985, p. 47–59.Google Scholar
  18. 18.
    M. Ghosh, this book, pp. xxx-yyy.Google Scholar
  19. 19.
    T. Ouchi, K. Hagita, M. Kwashima, T. Inoi & T. Tashiro, J. Controlled Release, 8, 141–150 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Charles G. Gebelein
    • 1
  • Mark Chapman
    • 1
  • Michele K. Davison
    • 2
  • Thomas E. Gober
    • 2
  1. 1.Departments of ChemistryYoungstown State UniversityYoungstownUSA
  2. 2.Departments of Chemical EngineeringYoungstown State UniversityYoungstownUSA

Personalised recommendations