In Vitro Analysis of Plasma Protein Diffusion in Crosslinked Gelatin Coatings Used for Blood Pumps

  • Hideto Emoto
  • Helen Kambic
  • Hiroaki Harasaki
  • Yukihiko Nosè

Abstract

Glutaraldehyde crosslinked gelatin surfaces, used as blood pump coatings in calves, have shown excellent long term blood compatibility. The study evaluated the diffusion and kinetics of plasma proteins into gelatin gel matrices using SDS-PAGE and GPC (gel permeation chromatography). The effects of plasma protein diffusion within the gel and the reactivity of bovine platelets to this surface were evaluated in vitro. Five percent crosslinked gelatin gels, 30–50 μm thick, were incubated with fresh bovine plasma for intervals of 5 minutes to 24 hours. Platelet reactivity to the gel surface was examined by exposing the gel surfaces to platelet rich plasma for 2 hours. Changes in platelet morphology were observed by SEM.

Keywords

Plasma Protein Platelet Rich Plasma Platelet Reactivity Blood Pump Cleveland Clinic Foundation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kambic, S. Murabayashi, H. Harasaki & Y. Nosè, Artif. Organs, 5 (suppl), 526 (1981).Google Scholar
  2. 2.
    H. Kambic, S. Murabayashi, H. Harasaki, S. Suwa, M. Pepoy, K. Hayashi, D. Hillegass, R. Kiraly & Y. Nosè, Artif. Organs, 3 (suppl), 203 (1979).Google Scholar
  3. 3.
    H. Harasaki, R. Kiraly, S. Murabayashi, M. Pepoy, A. Fields, H. Kambic, D. Hillegass & Y. Nosè, Artif. Organs, 3 (suppl), 216 (1979).Google Scholar
  4. 4.
    H. Kambic, S. Murabayashi, G. Jacobs, R. Kiraly, H. Harasaki, L. Golding & Y. Nosè, Cleve. Clin. Quart., 51, 105 (1984).CrossRefGoogle Scholar
  5. 5.
    Y. Nosè, The Development of a Totally Implantable Cardiac Replacement Device, Technical Proposal to NHLBI, November, 1986.Google Scholar
  6. 6.
    U. K. Laemmli, Nature, 227, 680 (1970).CrossRefGoogle Scholar
  7. 7.
    J. L. Brash, in: “Interactions of Blood with Natural and Artificial Surface,” E. W. Salzman, Ed., Marcel Dekker, New York, 1981, p. 37.Google Scholar
  8. 8.
    A. S. Hoffman, T. A. Horbett & B. D. Ratner, Ann. N. Y. Acad. Sci., 283, 372 (1977).CrossRefGoogle Scholar
  9. 9.
    R. S. Wilson, A. Marmur & S. L. Cooper, Ann. Biomed. Eng., 14, 383 (1986).CrossRefGoogle Scholar
  10. 10.
    M. A. Packham, G. Evans, M. F. Glynn & J. F. Mustard, J. Lab. Clin. Med., 73, 686 (1969).Google Scholar
  11. 11.
    C. S. P. Jenkinson, M. A. Packman, M. A. Guccione & J. F. Mustard, J. Lab. Clin. Med., 81, 280 (1973).Google Scholar
  12. 12.
    S. W. Kim, R. G. Lee, H. Oster, D. Coleman, J. D. Andrade, D. J. Lentz & D. Olsen, Trans. Am. Soc. Artif. Int. Organs, 20, 449 (1974).Google Scholar
  13. 13.
    H. Emoto, S. Murabayashi, H. Kambic, M. Zimmerman, J. Goldcamp, T. Horiuchi, H. Harasaki & Y. Nosè, Trans. Am. Soc. Artif. Int. Organs, 33, 606 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hideto Emoto
    • 1
  • Helen Kambic
    • 1
  • Hiroaki Harasaki
    • 1
  • Yukihiko Nosè
    • 1
  1. 1.Department of Artificial OrgansThe Cleveland Clinic Foundation, One Clinic CenterClevelandUSA

Personalised recommendations