The Carbonic Anhydrases

Overview of Their Importance in Cellular Physiology and in Molecular Genetics
  • Susanna J. Dodgson

Abstract

Carbonic anhydrase (CA) (EC 4.2.1.1.) was first characterized in erythrocytes in 1933 directly as a result of a search by several laboratories for a catalytic factor in the erythrocytes that had been theoretically determined as necessary for rapid transit of the HCO 3 from the erythrocyte to the pulmonary capillary. Two laboratories simultaneously published papers describing a catalytic factor. From Dr. Roughton’s laboratory at Cambridge University came a paper with an elegant title including a name for what they thought was a single enzyme (“Carbonic Anhydrase: Its Preparation and Properties”)61; from Dr. Stadie’s laboratory in Philadelphia came another paper with a less concise title (“The Catalysis of the Hydration of Carbon Dioxide and Dehydration of Carbonic Acid by the Enzyme Isolated from Red Blood Cells”; the other author was Dr. Helen O’Brien).73 Perhaps the more frequent citation of the Cambridge paper is due to the shorter title with scholarly colon as well as the confident naming of this newly discovered enzyme. The adjective “late” before the senior author’s name describes the tragically premature end of N. M. Meldrum’s life by his own hand not long after a crippling accident. Dr. Roughton remained in Cambridge until his death in 1971; he worked with many stellar white male scientists from both sides of the Atlantic Ocean (e.g., Sir Joseph Barcroft, Sir Hans Krebs, P E Scholander, Britton Chance, Quentin Gibson, Robert Forster, and J. W. Severinghaus). Dr. Roughton continued his interest in CO2 transport until his death; his life and career have been discussed and his list of publications documented by Dr. Quentin Gibson, a fellow member of the Royal Society and one-time colleague.31 Dr. Stadie continued in the field of metabolism, and by his death in the 1940s he was a noted researcher in diabetes. Dr. O’Brien also left the CA field.

Keywords

Acute Mountain Sickness Carbonic Anhydrase Activity Carbonic Anhydrase Inhibitor Carbonic Anhydrase Isozyme theCA Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, C., Gros, G., and Bartels, H. (eds.), 1980, Biophysics and Physiology of CO2, Springer-Verlag, New York.Google Scholar
  2. 2.
    Bidani, A., and Crandall, E., 1988, Annu. Rev. Physiol. 50: 639–652.PubMedCrossRefGoogle Scholar
  3. 3.
    Bradwell, A. R., Dykes, P W, and Coote, J. H. 1987, Sports Med. 4: 157–163.PubMedCrossRefGoogle Scholar
  4. 4.
    Bruns, W, and Gros, G. this volume, Chapter 9.Google Scholar
  5. 5.
    Cain, S. M., and Dunn, J. E., II, 1966, J. Appl. Physiol. 21: 1195–1200.PubMedGoogle Scholar
  6. 6.
    Cammer, W, this volume, Chapter 28.Google Scholar
  7. 7.
    Curtis, P 1983, J. Biol. Chem. 258: 4459–4463.PubMedGoogle Scholar
  8. 8.
    Davenport, H. W, 1939, J Physiol. 97: 3–43.Google Scholar
  9. 9.
    Davenport, H. W, 1946, Gastroenterology 7: 374–375.PubMedGoogle Scholar
  10. 10.
    Davenport, H. 1946, Physiol. Rev. 26: 560–573.PubMedGoogle Scholar
  11. 11.
    Dodgson, S. J., this volume, Chapter 25.Google Scholar
  12. 12.
    Dodgson, S. J., this volume, Chapter 36.Google Scholar
  13. 13.
    Dodgson, S. J., 1987, J. Appl. Physiol. 63: 2134–2141.PubMedGoogle Scholar
  14. 14.
    Dodgson, S. J., Forster, R. E., II, Sly, W. S., and Tashian, R. E., 1988, J. Appl. Physiol. 65: 1472–1480.PubMedGoogle Scholar
  15. 15.
    Dodgson, S. J., and Watford, M., 1990, Arch. Biochem. Biophys. 277: 410–414.PubMedCrossRefGoogle Scholar
  16. 16.
    Dubrose, T., and Bidani, A. 1988, Annu. Rev. Physiol. 50: 653–667.CrossRefGoogle Scholar
  17. 17.
    Easson, L. H., and Stedman, E., 1936–7, Proc. R. Soc. London Ser. B. 121: 142–164.Google Scholar
  18. 18.
    Edsall, J. T, 1969, in: CO2: Chemical, Biochemical, and Physiological Aspects (E. E. Forster, II, J. T Edsall, A. B. Otis, and E. J. W. Roughton, eds.) NASA SP-188, pp. 15–34.Google Scholar
  19. 19.
    Edwards, Y. H., Charlton, J., and Brownson, S., 1988, Gene 7: 473–481.CrossRefGoogle Scholar
  20. 20.
    Edwards, Y. H., Barlow, J. H., Konialis, C. P, Povey, S., and Butterworth, P. H., 1986, Ann. Hum. Genet. 50: 123–129.PubMedCrossRefGoogle Scholar
  21. 21.
    Feitl, M., and Krupin, T. this volume, Chapter 13.Google Scholar
  22. 22.
    Fernley, R. T, this volume, Chapter 34.Google Scholar
  23. 23.
    Fernley, R. T., Coghlan, J. P, and Wright, R. D., 1988, Biochem. J. 249: 201–207.PubMedGoogle Scholar
  24. 24.
    Forsman, C., Behravan, G., Jonsson, B. H., Liang, Z. W, Lindskog, S., Ren, X. L., Sandstrom, J., and Wallgren, K., 1988, FEBS Leu. 229; 360–362.CrossRefGoogle Scholar
  25. 25.
    Forster, R. E., II, this volume, Chapter 6.Google Scholar
  26. 26.
    Forster, R. E., II, Edsall, J. T., Otis, A. B., and Roughton, F J. W. (eds.), 1969, CO 2 : Chemical, Biochemical, and Physiological Aspects NASA SP-188.Google Scholar
  27. 27.
    Frémont, P, Charest, P. M., Côte, C., and Rogers, R A., this volume, Chapter 20.Google Scholar
  28. 28.
    Garg, L. C., 1974, J. Pharmacol. Exp. Ther. 189: 557–562.PubMedGoogle Scholar
  29. 29.
    Garg, L. C., 1974, Biochem. Pharmacol. 23: 3153–3161.PubMedCrossRefGoogle Scholar
  30. 30.
    Geers, C., and Gros, G., this volume, Chapter 19.Google Scholar
  31. 31.
    Gibson, Q. H., 1973, Biogr. Mem. Fellows R. Soc. 19: 1899–1972.CrossRefGoogle Scholar
  32. 32.
    Graham, D., Reed, M. L. Patterson, B. D., Hockley, D. G., and M. R. Dwyer, 1984, Ann. N. Y. Acad. Sci. 429: 222–237.PubMedCrossRefGoogle Scholar
  33. 33.
    Gros, G., and S. J. Dodgson. 1988. Annu. Rev. Physiol. 50: 669–694.PubMedCrossRefGoogle Scholar
  34. 34.
    Gros, G., Forster, R. E., II, and Dodgson, S. J., 1988, (D. Häussinger, ed.), Academic Press, London, pp. 203–231.Google Scholar
  35. 35.
    Harned, H. S., and Bonner, F T., 1945, J. Am. Chem. Soc. 67: 1026–1031.CrossRefGoogle Scholar
  36. 36.
    Henry, R. P., this volume, Chapter 8.Google Scholar
  37. 37.
    Hewett-Emmett, D., and R. E. Tashian, this volume, Chapter 2.Google Scholar
  38. 38.
    Hill, E. P, 1986, J. Appl. Physiol. 60: 191–197.PubMedGoogle Scholar
  39. 39.
    Holmes, R. S., 1976, J. Exp. Zool. 197: 289–295.PubMedCrossRefGoogle Scholar
  40. 40.
    Jeffery, S. this volume, Chapter 12.Google Scholar
  41. 41.
    Keilin, D., and Mann, T., 1940, Biochem. J. 34: 1163–1176.PubMedGoogle Scholar
  42. 42.
    Khalifah, R. G., and Silverman, D. N., this volume, Chapter 4.Google Scholar
  43. 43.
    Krebs, H. A., 1948, Biochem. J. 43: 525–528.PubMedGoogle Scholar
  44. 44.
    Krebs, H. A., and Henseleit, K., 1932, Hoppe-Seyler’s Z. Physiol. Chem. 210: 33–66.CrossRefGoogle Scholar
  45. 45.
    Krebs, H. A., and Roughton, F. J. W, 1948, Biochem. J. 43: 550–595.PubMedGoogle Scholar
  46. 46.
    Krebs, H. A., and Speakman, J. C. 1946. Br. Med. J. 1: 47–50.CrossRefGoogle Scholar
  47. 47.
    Lewis, S. E., Erickson, R. P, Barnett, L. B., Venta, P J., and Tashian, R. E., 1988, Proc. Natl. Acad. Sci. USA 85: 1361–1366.Google Scholar
  48. 48.
    Lindskog, S., Henderson, L. E., Kannan, K. K., Lijas, A., Nyman, P. O., and Strandberg, B., 1971, in: The Enzymes, Volume 5 (P. D. Boyer, ed.), Academic Press, New York, pp. 587–665.Google Scholar
  49. 49.
    Lindskog, S., Engberg, P, Forsman, C., Ibrahim, S. A., Jonsson, B.-H., Simonsson, I., and Tibell, L., 1984, Ann. N. Y. Acad. Sci. 429: 61–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Lippa, E. this volume, Chapter 14.Google Scholar
  51. 51.
    Longmuir, I. S., Forster, R. E., II, and Woo, C. Y., 1966, Nature (London) 209: 393–394.CrossRefGoogle Scholar
  52. 52.
    Magid, E., 1967, Scand. J. Haematol. 4: 257–270.PubMedCrossRefGoogle Scholar
  53. 53.
    Mann, T., and Keilin, D., 1940, Nature (London) 146: 164–165.Google Scholar
  54. 54.
    Maren, T. H., 1967, Physiol. Rev. 47: 595–781.PubMedGoogle Scholar
  55. 55.
    Maren, T. H., 1977, Am. J. Physiol. 232: F291 - F297.PubMedGoogle Scholar
  56. 56.
    Maren, T. H., 1984, Ann. N.Y. Acad. Sci. 429: 568–579.PubMedCrossRefGoogle Scholar
  57. 57.
    Maren, T. H., 1985, N. Engl. J. Med. 313: 179–181.PubMedCrossRefGoogle Scholar
  58. 58.
    Maren, T. H., 1988, Annu. Rev. Physiol. 50: 695–717.PubMedCrossRefGoogle Scholar
  59. 59.
    Maren, T. H., and Couto, E. O., 1979, Arch. Biochem. Biophys. 196: 501–510.PubMedCrossRefGoogle Scholar
  60. 60.
    Maren, T. H., Rayburn, C. S., and Liddell, N. E., 1976, Science 191: 469–472.PubMedCrossRefGoogle Scholar
  61. 61.
    Meldrum, N. U., and Roughton, F J. W, 1983, J. Physiol. (London) 80: 113–142.Google Scholar
  62. 62.
    Murakami, H., and Sly, W. S., 1987, J. Biol. Chem. 262: 1382–1388.PubMedGoogle Scholar
  63. 63.
    Neubauer, J., this volume, Chapter 27.Google Scholar
  64. 64.
    Nioka, S., and Forster, R. E., II, this volume, Chapter 29.Google Scholar
  65. 65.
    Philpot, F. J., and J. St. L. Philpot, 1936–7, Biochem. J. 30: 2191–2193.Google Scholar
  66. 66.
    Preisig, P. A., Toto, R. D., and Alpern, R. J., 1987, Renal Physiol. Basel 10: 136–159.Google Scholar
  67. 67.
    Puscas, I., 1984, Ann. N.Y. Acad. Sci. 429: 587–591.PubMedCrossRefGoogle Scholar
  68. 68.
    Rogers, J. H., and Hunt, S. P, 1987, Neuroscience 23: 343–361.PubMedCrossRefGoogle Scholar
  69. 69.
    Roughton, F. J. W, 1935, Physiol. Rev. 15: 241–206.Google Scholar
  70. 70.
    Silverton, S. F, this volume, Chapter 33.Google Scholar
  71. 71.
    Sly, W. S., this volume, Chapter 15.Google Scholar
  72. 72.
    Sly, W. S., Hewett-Emmett, D., Whyte, M. P, Yu, Y.-S. L., and Tashian, R. E., 1983, Proc. Natl. Acad. Sci. USA 80: 2752–2756.PubMedCrossRefGoogle Scholar
  73. 73.
    Stadie, W. C., and O’Brien, H., 1933, J. Biochem. 103: 521–529.Google Scholar
  74. 74.
    Sutton, J. R., Houston, C. S., Mansell, A. L., McFadden, M. D., Hackett, P. M., Rigg, J. R. A., and Powles, A. C. P, 1979, N. Engl. J. Med. 301: 1329–1331.PubMedCrossRefGoogle Scholar
  75. 75.
    Swenson, E. R., this volume, Chapter 23.Google Scholar
  76. 76.
    Tashian, R. E., 1989, BioEssays 10: 186–192.PubMedCrossRefGoogle Scholar
  77. 77.
    Tashian, R. E., and Carter, N. D., 1976, Adv. Hum. Genet. 7: 1–56.PubMedGoogle Scholar
  78. 78.
    Tashian, R. E., and Hewett-Emmett, D. (eds.), 1984, Ann. N.Y. Acad. Sci. 429.Google Scholar
  79. 79.
    Zù, C., Silverman, D. N., Forsman, C., Jonsson, D. H., and Lindskog, S., 1989, Biochemistry.Google Scholar
  80. 80.
    van Goor, H., 1948, Enzymology 13: 73–164.Google Scholar
  81. 81.
    Väänänen, H. K., and Parvinen, E.-K., this volume, Chapter 32.Google Scholar
  82. 82.
    Väänänen, H. K., Takala, T. E., Tolonen, V., Vuori, J., and Myllyla, V. V., 1988, Arch. Neurol. 45: 1254–1256.PubMedCrossRefGoogle Scholar
  83. 83.
    Venta, P. J., Montgomery, J. C., Hewett-Emmett, D., Wiebauer, K., and Tashian, R. E., 1985, J. Biol. Chem. 260: 12130–12135.PubMedGoogle Scholar
  84. 84.
    Wade, R., Gunning, P, Eddy, R., Shows, T., and Kedes, L., 1986, Proc. Nat. Sci. USA 83:95719575.Google Scholar
  85. 85.
    Whitney, P L., and Briggie, T. V., 1982, J. Biol. Chem. 257: 12056–12059.PubMedGoogle Scholar
  86. 86.
    Wistrand, P, 1984, Ann. N.Y. Acad. Sci. 429: 609–619.PubMedCrossRefGoogle Scholar
  87. 87.
    Wistrand, P, and Knuuttila, K.-G., 1989, Kidney Im. 35: 851–859.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Susanna J. Dodgson
    • 1
  1. 1.Department of PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations