Capsaicin as a Tool for Studying Sensory Neuron Functions

  • Peter Holzer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 298)

Abstract

It was only by the middle of this century that the extent of the sensory innervation of visceral organs including the gastrointestinal tract was revealed. Quantitative analysis showed that as much as 90% of the fibers in the vagus nerve are of afferent nature and that also in the splanchnic and pelvic nerves the afferent-to-efferent fiber ratio is 3: 1 and 1: 1, respectively (see Leek, 1977). These sensory neurons are primary afferent neurons, the vagal afferents having their cell bodies in the nodose ganglion and the splanchnic and pelvic afferents arising from the dorsal root (spinal) ganglia. The sensory nervous system is thought of as a receptive and afferent system that re-flexly activates efferent pathways and thereby enables the organism to react to changes in the external and internal environment and to maintain homeostasis. In addition, there is evidence that a population of peptide-containing afferent neurons can act as an effector system by itself (see Szolcsányi, 1984b; Holzer, 1988; Maggi and Meli 1988).

Keywords

Dorsal Root Ganglion Sensory Neuron Primary Afferent Neuron Neurogenic Inflammation Dorsal Root Ganglion Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlstedt, S., Alving, K., Hesselmar, B., Olaisson, E., 1986, Enhancement of the bronchial reactivity in immunized rats by neonatal treatment with capsaicin, Int. Arch. Allergy Appl. Immunol., 80: 262.PubMedCrossRefGoogle Scholar
  2. Amann, R., Donnerer, J., Lembeck, F., 1989, Capsaicin-induced stimulation of polymodal nociceptors is antagonized by ruthenium red independently of extracellular calcium, Neuroscience, 32: 255.PubMedCrossRefGoogle Scholar
  3. Arvidsson, J., Ygge, J., 1986, A quantitative study of the effects of neonatal capsaicin treatment and of subsequent peripheral nerve transection in the adult rat, Brain Res., 397: 130.PubMedCrossRefGoogle Scholar
  4. Ault, B., Evans, H., 1980, Depolarizing action of capsaicin on isolated dorsal root fibres of the rat, J. Physiol. (London), 306: 22P.Google Scholar
  5. Baranowski, R., Lynn, B., Pini, A., 1986, The effects of locally applied capsaicin on conduction in cutaneous nerves of four mammalian species, Br. J. Pharmacol., 89: 267.PubMedCrossRefGoogle Scholar
  6. Barthó, L., Holzer, P., 1985, Search for a physiological role of substance P in gastrointestinal motility, Neuroscience, 16: 1.PubMedCrossRefGoogle Scholar
  7. Barthó, L. Pethö, G., Antal, A., Holzer, P., Szolcsányi J., 1987, Two types of relaxation due to capsaicin in the guinea-pig isolated ileum, Neurosci. Lett., 81: 146.PubMedCrossRefGoogle Scholar
  8. Barthó, L., Szolcsányi, J., 1978, The site of action of capsaicin on the guinea-pig isolated ileum, Naunyn-Schmiedeberg’s Arch. Pharmacol., 305: 75.CrossRefGoogle Scholar
  9. Bevan, S.J., James, I.F., Rang, H.P., Winter, J. Wood, J.N., 1987, The mechanism of action of capsaicin — a sensory neurotoxin, in: “Neurotoxins and Their Pharmacological Implications”, P. Jenner, ed., Raven Press, New York.Google Scholar
  10. Bevan, S., Yeats, J.C., 1989, Protons activate a sustained inward current in a subpopulation of rat isolated dorsal root ganglion (DRG) neurones, J. Physiol. (London), 417: 81P.Google Scholar
  11. Buck, S.H. Burks, T.F., 1986, The neuropharmacology of capsaicin — review of some recent observations, Pharmacol. Rev., 38: 179.PubMedGoogle Scholar
  12. Buck, S.H., Walsh, J.H., Davis T.P., Brown, M.R., Yamamura, H.I., Burks, T.F., 1983, Characterization of the peptide and sensory neurotoxic effects of capsaicin in the guinea pig, J. Neurosci., 3: 2064.PubMedGoogle Scholar
  13. Carpenter, S.E., Lynn, B., 1981, Vascular and sensory response of human skin to mild injury after topical treatment with capsaicin, Br. J. Pharmacol., 73: 755.PubMedCrossRefGoogle Scholar
  14. Cervero, F., McRitchie, H.A., 1982, Neonatal capsaicin does not affect unmyelinated efferent fibers of the autonomic nervous system: functional evidence, Brain Res., 239: 283.PubMedCrossRefGoogle Scholar
  15. Chahl, L.A., 1988, Antidromic vasodilation and neurogenic inflammation, Pharmacol. Ther., 37: 275.PubMedCrossRefGoogle Scholar
  16. Chiba, T., Masuko, S., Kawano, H., 1986, Correlation of mitochondrial swelling after capsaicin treatment and substance P and somatostatin immunoreactivity in small neurons of dorsal root ganglion in the rat, Neurosci. Lett., 64: 311.PubMedCrossRefGoogle Scholar
  17. Chung, K., Schwen, R.J., Coggeshall, R.E., 1985, Ureteral axon damage following subcutaneous administration of capsaicin in adult rats, Neurosci. Lett., 53: 221.PubMedCrossRefGoogle Scholar
  18. Donnerer, J., Lembeck, F., 1982, Analysis of the effects of intravenously injected capsaicin in the rat, Naunyn-Schmiedeberg’s Arch. Pharmacol., 320: 54.CrossRefGoogle Scholar
  19. Duckies, S.P., 1986, Effects of capsaicin on vascular smooth muscle, Naunyn-Schmiedeberg’s Arch. Pharmacol., 333: 59.CrossRefGoogle Scholar
  20. Fehér, E., Vajda, J., 1982, Effect of capsaicin on the nerve elements of the small intestine, Acta Morphol. Acad. Sci. Hung., 30: 57.PubMedGoogle Scholar
  21. Fitzgerald, M., 1983, Capsaicin and sensory neurones — a review, Pain, 15: 109.PubMedCrossRefGoogle Scholar
  22. Foster, R.W., Ramage, A.G., 1981, The action of some chemical irritants on somatosensory receptors of the cat, Neuropharmacology, 20: 191.PubMedCrossRefGoogle Scholar
  23. Gamse, R., 1982, Capsaicin and nociception in the rat and mouse. Possible role of substance P, Naunyn-Schmiedeberg’s Arch. Pharmacol., 320.205.CrossRefGoogle Scholar
  24. Gamse, R., Holzer, P., and Lembeck, F., 1980, Decrease of substance P in primary sensory neurones and impairment of neurogenic plasma extravasation by capsaicin, Br. J. Pharmacol., 68: 207.PubMedCrossRefGoogle Scholar
  25. Gamse, R., Petsche, U., Lembeck, F., Jancsó, G., 1982, Capsaicin applied to peripheral nerve inhibits axoplasmic transport of substance P and somatostatin, Brain Res., 239: 447.PubMedCrossRefGoogle Scholar
  26. Hajos, M., Svensson, K., Nissbrandt, H., Obál, F., Carlsson, A., 1986, Effects of capsaicin on central monoaminergic mechanisms in the rat, J. Neural. Transm., 66: 221.PubMedCrossRefGoogle Scholar
  27. Handwerker, H.O., Holzer-Petsche, U., Heym, C., Welk, E., 1984, C-fibre functions after topical application of capsaicin to a peripheral nerve and after neonatal capsaicin treatment, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., Akadémiai Kiadó, Budapest.Google Scholar
  28. Hayes, A.G., Tyers, M.B., 1980, Effects of capsaicin on nociceptive heat, pressure and chemical thresholds and on substance P levels in the rat, Brain Res., 189: 561.PubMedCrossRefGoogle Scholar
  29. Heyman, I., Rang, H.P., 1985, Depolarizing responses to capsaicin in a subpopulation of rat dorsal root ganglion cells, Neurosci. Lett., 56: 69.PubMedCrossRefGoogle Scholar
  30. Hiura, A., Sakamoto, Y., 1987, Quantitative estimation of the effect of capsaicin on the mouse primary sensory neurons, Neurosci. Lett., 76: 101.PubMedCrossRefGoogle Scholar
  31. Holzer, P., 1988, Local effector functions of capsaicin-sensitive nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides, Neuroscience, 24: 739.PubMedCrossRefGoogle Scholar
  32. Hoyes, A.D., Barber, P., 1981, Degeneration of axons in the ureteric and duodenal nerve plexuses of the adult rat following in vivo treatment with capsaicin, Neurosci. Lett., 25: 19.PubMedCrossRefGoogle Scholar
  33. Jancsó, G., Hökfelt, T., Lundberg, J.M., Király, E., Halász, N., Nilsson, G., Terenius, L., Rehfeld, J. Steinbusch, H., Verhofstad, A.E.R., Said, S., Brown, M., 1981a, Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin and 5-hydroxytryptamine, J. Neurocytol., 10: 963.PubMedCrossRefGoogle Scholar
  34. Jancsó, G., Király, E., Jancsó-Gábor, A., 1977, Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones, Nature, 270: 741.PubMedCrossRefGoogle Scholar
  35. Jancsó, G., Király, E., Jancsó-Gábor, A., 1981b, Direct evidence for an axonal site of action of capsaicin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 313: 91.CrossRefGoogle Scholar
  36. Jancsó, G., Király, E., Joó, F., Such, G., Nagy, A., 1985, Selective degeneration by capsaicin of a subpopulation of primary sensory neurones in the adult rat, Neurosci. Lett., 59: 209.PubMedCrossRefGoogle Scholar
  37. Jancsó, G., Such, G., 1983, Effects of capsaicin applied perineurally to the vagus nerve on cardiovascular and respiratory functions in the cat, J. Physiol. (London), 341: 359.Google Scholar
  38. Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J., 1967, Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin, Br. J. Pharmacol., 31: 138.Google Scholar
  39. Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J., 1968, The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat, Br. J. Pharmacol., 32: 32.Google Scholar
  40. Jessell, T.M., Iversen, L.L., Cuello, A.C., 1978, Capsaicininduced depletion of substance P from primary sensory neurones, Brain Res., 152: 183.PubMedCrossRefGoogle Scholar
  41. Kai-Kai, M.A., Anderton, B.H., Keen, P., 1986, A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase or neurofilament protein, Neuroscience, 18: 475.PubMedCrossRefGoogle Scholar
  42. Kenins, P., 1982, Responses of single nerve fibres to capsaicin applied to the skin, Neurosci. Lett., 29: 83.PubMedCrossRefGoogle Scholar
  43. Kirchgessner, A.L., Dodd, J., Gershon, M.D., 1988, Markers shared between dorsal root and enteric ganglia, J. Comp. Neurol., 276: 607.PubMedCrossRefGoogle Scholar
  44. Lawson, S.N., Harper, A.A., 1984, Neonatal capsaicin is not a specific neurotoxin for sensory C-fibres or small dark cells of rat dorsal root ganglia, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., Akadémiai Kiadó, Budapest.Google Scholar
  45. Leek, B.F., 1977, Abdominal and pelvic visceral receptors, Br. Med. Bull., 33: 163.PubMedGoogle Scholar
  46. Lembeck, F., Donnerer, J., 1981, Time course of capsaicin-induced functional impairments in comparison with changes in neuronal substance P content, Naunyn-Schiedeberg’s Arch. Pharmacol., 316: 240.CrossRefGoogle Scholar
  47. Longhurst, J.C., Ashton, J.W., Iwamoto, G.A., 1980, Cardiovascular reflexes resulting from capsaicin-stimulated gastric receptors in anesthetized dogs, Circ. Res., 46: 780.PubMedCrossRefGoogle Scholar
  48. Lundberg, J.M., Franco-Cereceda A., Hua, X.-Y., Hökfelt, T., Fischer, J., 1985, Co-existence of substance P and calcitonin gene-related peptide immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin, Eur. J. Pharmacol., 108: 315.PubMedCrossRefGoogle Scholar
  49. Lundberg, J.M., Saria, A., 1983, Capsaicin-induced desensitization of the airway mucosa to cigarette smoke, mechanical and chemical irritants, Nature, 302: 251.PubMedCrossRefGoogle Scholar
  50. Lundberg, J.M., Saria, A., 1987, Polypeptide-containing neurons in airway smooth muscle, Ann. Rev. Physiol., 49: 557.CrossRefGoogle Scholar
  51. Lynn, B., Carpenter, S.E., Pini, A., 1984, Capsaicin and cutaneous afferents, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., Akadémiai Kiadó, Budapest.Google Scholar
  52. Lynn, B., Pini, A., Baranowski, R., 1987, Injury of somatosensory afferents by capsaicin: selectivity and failure to regenerate, in: “Effects of Injury on Trigeminal and Spinal Somatosensory Systems”, L.M. Pubols, B. Sessle, eds., Alan R. Liss, New York.Google Scholar
  53. Lynn, B., Shakhanbeh, J., 1988, Substance P content of the skin, neurogenic inflammation and numbers of C-fibres following capsaicin application to a cutaneous nerve in the rabbit, Neuroscience, 24: 769.PubMedCrossRefGoogle Scholar
  54. Maggi, C.A., Meli, A., 1988, The role of neuropeptides in the regulation of the micturition reflex, J. Auton. Pharmacol., 6: 133.Google Scholar
  55. Maggi, C.A., Meli, A., 1988, The sensory-efferent function of capsaicin-sensitive sensory neurons, Gen. Pharmacol., 19: 1.PubMedCrossRefGoogle Scholar
  56. Maggi, C.A., Meli, A., Santicioli, P., 1987, Four motor effects of capsaicin on guinea-pig distal colon, Br. J. Pharmacol., 90: 651.PubMedCrossRefGoogle Scholar
  57. Maggi, C.A., Patacchini, R., Santicioli, P., Giuliani, S., Geppetti, P., Meli, A., 1988, Protective action of ruthenium red toward capsaicin desensitization of sensory fibers, Neurosci. Lett., 88: 201.PubMedCrossRefGoogle Scholar
  58. Marley, P., Livett, B.G., 1985, Neuropeptides in the autonomic nervous system, CRC Crit. Rev. Clin. Neurobiol., 1: 201.PubMedGoogle Scholar
  59. Marsh, S.J., Stansfeld, C.E., Brown, D.A., Davey, R., McCarthy, D., 1987, The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro, Neuroscience, 23: 275.PubMedCrossRefGoogle Scholar
  60. Nagy, J.I., 1982, Capsaicin: a chemical probe for sensory neuron mechanisms, in: “Handbook of Psychopharmacology”, Vol. 15, L.L. Iversen, S.D. Iversen, S.H. Snyder, eds., Plenum, New York.Google Scholar
  61. Nagy, J.I., Hunt, S.P., Iversen, L.L., Emson, P.C., 1981, Biochemical and anatomical observations on the degeneration of peptide containing primary afferent neurons after neonatal capsaicin, Neuroscience, 6: 1923.PubMedCrossRefGoogle Scholar
  62. Nagy, J.I., Iversen, L.L., Goedert, M., Chapman, D., Hunt, S.P., 1983, Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat, J. Neurosci., 3: 399.PubMedGoogle Scholar
  63. Panerai, A.E., Martini, A., Locatelli, V., Mantegazza, P., 1983, Capsaicin decreases b-endorphin hypothalamic concentrations in the rat, Pharmacol. Res. Commun., 15: 825.PubMedCrossRefGoogle Scholar
  64. Petersen, M., Wagner, G., Pierau, F.-K., 1989, Modulation of calcium-currents by capsaicin in a subpopulation of sensory neurons of guinea pig, Naunyn-Schmiedeberg’s Arch. Pharmacol., 339: 184.Google Scholar
  65. Petsche, U., Fleischer, E., Lembeck, F., Handwerker, H.O., 1983, The effect of capsaicin application to a peripheral nerve on impulse conduction in functionally identified afferent nerve fibres, Brain Res., 265: 233.PubMedCrossRefGoogle Scholar
  66. Raybould, H.E., Taché, Y., 1988, Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats, Am. J. Physiol., 255: G242.Google Scholar
  67. Réthelyi, M., Salim, M.Z., Jancsó, G., 1986, Altered distribution of dorsal root fibers in the rat following neonatal capsaicin treatment, Neuroscience, 18: 749.PubMedCrossRefGoogle Scholar
  68. Ritter, S., Dinh, T.T., 1988, Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat, J. Comp. Neurol., 271: 79.PubMedCrossRefGoogle Scholar
  69. Rózsa, Z., Jacobson, E.D., 1989, Capsaicin-sensitive nerves are involved in bile-oleate induced intestinal hyperemia, Am. J. Physiol., 256: G476.Google Scholar
  70. Russell, L.C., Burchiel, K.J., 1984, Neurophysiological effects of capsaicin, Brain Res. Rev., 8: 165.CrossRefGoogle Scholar
  71. Saporta, S., 1986, Loss of spinothalamic tract neurons following neonatal treatment of rats with the neurotoxin capsaicin, Somatosens. Res., 4: 153.PubMedCrossRefGoogle Scholar
  72. Saria, A., Martling, C.-R., Yan, Z., Theodorsson-Norheim, E., Gamse, R., Lundberg, J.M. 1988, Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation, Am. Rev. Respir. Dis., 137: 1330.PubMedCrossRefGoogle Scholar
  73. Scadding, J.W., 1980, The permanent anatomical effects of neonatal capsaicin on somatosensory nerves, J. Anat., 131: 473.Google Scholar
  74. Shimizu, T., Izumi, K., Fujita, S., Koya, T., Sorimachi, M., Ohba, N., Fukuda, T., 1987, Capsaicin-induced corneal lesions in mice and the effects of chemical sympathectomy, J. Pharmacol. Exp. Ther., 243: 690.PubMedGoogle Scholar
  75. Skofitsch, G., Jacobowitz, D.M., 1985, Galanin-like immuno-reactivity in capsaicin-sensitive sensory neurons and ganglia, Brain Res. Bull., 15: 191.PubMedCrossRefGoogle Scholar
  76. South, E.H., Ritter, R.C., 1988, Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety, Peptides, 9: 601.PubMedCrossRefGoogle Scholar
  77. Stein, R.D., Genovesi, S., Demarest, K.T., Weaver, L.C., 1986, Capsaicin treatment attenuates the reflex excitation of sympathetic activity caused by chemical stimulation of intestinal afferent nerves, Brain Res., 397: 145.PubMedCrossRefGoogle Scholar
  78. Such, G., Jancsó, G., 1986, Axonal effects of capsaicin: an electrophysiological study, Acta Physiol. Hung., 67: 53.PubMedGoogle Scholar
  79. Szallasi, A., Blumberg, P.M., 1989a, Resiniferatoxin, a phorbolrelated diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper, Neuroscience, 30: 515.PubMedCrossRefGoogle Scholar
  80. Szallasi, A., Blumberg, P.M., 1989b, Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, to dorsal root ganglia membranes, Pharmacologist, 31: P353.Google Scholar
  81. Szolcsányi, J., 1977, A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain, J. Physiol. (Paris), 73: 251.Google Scholar
  82. Szolcsányi, J., 1982, Capsaicin type pungent agents producing pyrexia, in: “Pyretics and Antipyretics”, Handbook of Experimental Pharmacology, Vol. 60, A.S. Milton, ed., Springer, Berlin.Google Scholar
  83. Szolcsányi, J., 1984a, Capsaicin and neurogenic inflammation: history and early findings, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., Akadémiai Kiadó, Budapest.Google Scholar
  84. Szolcsányi, J., 1984b, Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., Akadémiai Kiadó, Budapest.Google Scholar
  85. Szolcsányi, J., 1987, Selective responsiveness of polymodal nociceptors of the rabbit ear to capsaicin, bradykinin and ultraviolet irradiation, J. Physiol. (London), 388: 9.Google Scholar
  86. Szolcsányi, J., Anton, F., Reeh, P.W., Handwerker, H.O., 1988, Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin, Brain Res., 446: 262.PubMedCrossRefGoogle Scholar
  87. Szolcsányi, J., Jancsó-Gábor, A., Joó, F., 1975, Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 287: 157.CrossRefGoogle Scholar
  88. Szolcsányi, J., Joó, F., Jancsó-Gabor, A., 1971, Mitochondrial changes in preoptic neurones after capsaicin desensitization of the hypothalamic thermodetectors in rats, Nature, 229: 116.PubMedCrossRefGoogle Scholar
  89. Szolcsányi, J., Sann, H., Pierau, F.-K., 1986, Nociception in pigeons is not impaired by capsaicin, Pain, 27: 247.PubMedCrossRefGoogle Scholar
  90. Theodorsson-Norheim, E., Hua, X.-Y., Brodin, E., Lundberg, J.M., 1985, Capsaicin treatment decreases tissue levels of neurokinin A-like immunoreactivity in the guinea-pig, Acta Physiol. Scand., 124: 129.PubMedCrossRefGoogle Scholar
  91. Virus, R.M. McManus D.Q., Gebhart, G.F., 1983, Capsaicin treatment in adult Wistar-Kyoto and spontaneously hypertensive rats: neurochemical effects in the spinal cord, Eur. J. Pharmacol., 92: 1.CrossRefGoogle Scholar
  92. Wall, P.D., Fitzgerald, M., Nussbaumer, J.C., Van der Loos, H., Devor, M., 1982, Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin, Nature, 295: 691.PubMedCrossRefGoogle Scholar
  93. Williams, J.T., Zieglgänsberger, W., 1982, The acute effects of capsaicin on rat primary afferent and spinal neurons, Brain Res., 253: 125.PubMedCrossRefGoogle Scholar
  94. Winter, J., 1987, Characterization of capsaicin-sensitive neurones in adult rat dorsal root ganglion cultures, Neurosci. Lett., 80: 134.PubMedCrossRefGoogle Scholar
  95. Wood, J.N., Winter, J., James, I.F., Rang, H.P., Yeats, J., Bevan, S., 1988, Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture, J. Neurosci., 8: 3208.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Peter Holzer
    • 1
  1. 1.Department of Experimental and Clinical PharmacologyUniversity of GrazGrazAustria

Personalised recommendations