An Improved Process to Facilitate the Chemical Bonding of Electroless Copper to Polyetherimide Surfaces

  • B. R. Karas
  • D. F. Foust
  • W. V. Dumas
  • E. J. Lamby

Abstract

An improved, chromium-free, non-swell and etch process for treating Ultem® polyetherimide is described. A peel strength between electroless copper and the polymer of 150–200 g/mm is obtained while producing little surface roughness. The results of ultrasonic aluminum ball bond tests to gilded polyetherimide surfaces show an order of magnitude decrease in wires failing to bond relative to previous systems. Results from scanning and transmission electron microscopic, X-ray photoelectron spectroscopic, and Auger analyses of the system are discussed and indicate that a well-defined interface exists. Classes of adhesion promoters and the effects of process parameters on the innate properties of the polymer are described. Cohesive failure occurs in the polymer layer during 90°peel testing. The applicability of the system to a manufacturing environment is discussed via simulated production techniques.

Keywords

Wire Bonding Etch Time Peel Testing Peel Strength Adhesion Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Travis and J. Ganjei, Proc. 41 st Reinforced Plastics/Composite Institute, 1986, Session 8-A, p 1.Google Scholar
  2. 2.
    J.M. Mihelcic, Printed Circuit Design, 41 (Feb. 1988).Google Scholar
  3. 3.
    ICI Technical Bulletin 400-186.Google Scholar
  4. 4.
    J.D. Gandre, Printed Circuit Design, 3, No. 6 (June 1986).Google Scholar
  5. 5.
    J. Rose, Connection Technol. 5, No. 1, 21–24 (January 1989).Google Scholar
  6. 6.
    D.C. Frisch, and W. Weber, US Patent 4,594,311 (1986).Google Scholar
  7. 7.
    H. Cole, Y.S. Liu, J.W. Rose, R. Guida, L.M. Levinson, and H.R. Phillip, Proceedings of Symposium on Laser Processes for Microelectronic Applications, Electrochemical Society, #88-10, 1988, p. 187.Google Scholar
  8. 8.
    D.C. Frisch, J. Row, and J. Somers, paper presented at the National Electronic Packaging Conference, Nepcon West, Los Angeles, 1987.Google Scholar
  9. 9.
    L. Firestone, Printed Circuit Fabrication 11, No. 11, 107 (November 1988).Google Scholar
  10. 10.
    A.M. Lyons, F.T. Mendenhall, Jr., M. Robbins, N.R. Quick, and C.W. Wilkins, Jr., US Patent 4,691,091 (1987).Google Scholar
  11. 11.
    H.S. Cole, Y.S. Liu, J.W. Rose, and R. Guida, Appl. Phys. Lett, 53, 2111 (1988).CrossRefGoogle Scholar
  12. 12.
    K. L. Mittal, J. Vac. Sci. Technol., 13, 19 (1976).CrossRefGoogle Scholar
  13. 13.
    W.P. Townsend, in “Handbook of Adhesives”, 2nd Edition, I. Skeist, ed., p. 846, van Nostand Reinhold, New York (1977).Google Scholar
  14. 14.
    H. Malkow and W. Strache, German Patent DE 3612822 (1987).Google Scholar
  15. 15.
    H. Mahlkow, M. Romer, G. Rosskomp, H.-M. Seidenzsinner, L. Stein, and W. Strache, German Patent DE 3708214 (1988).Google Scholar
  16. 16.
    J. Grapentin, H. Mahlkon, and J. Skupsch, US Patent 4,517,254 (1985).Google Scholar
  17. 17.
    W.V. Dumas and D.F. Foust, US Patent 4,775,449 (1988).Google Scholar
  18. 18.
    D.F. Foust and W.V. Dumas, in “Metallization of Polymers”, E. Sacher, J.-J. Pireaux, and S. P. Kowalczyk, eds., ACS Symposium Series No. 440, Chapter 35, (1990).Google Scholar
  19. 19.
    D.F. Foust, W.V. Dumas, E.J. Lamby, and B.R. Karas, US Patent 4,842,946 (1989).Google Scholar
  20. 20.
    M.C. Burrell, B. R. Karas, D. F. Foust, W. V. Dumas, E. J. Lamby, W. T. Grubb, and J.J. Chera, in “Metallized Plastics 1: Fundamental and Applied Aspects,” K. L. Mittal and J. R. Susko, eds., pp. 223–233, Plenum Press, New York (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. R. Karas
    • 1
  • D. F. Foust
    • 1
  • W. V. Dumas
    • 2
  • E. J. Lamby
    • 1
  1. 1.GE Corporate Research and DevelopmentSchenectadyUSA
  2. 2.GE Armament and Electrical Systems DepartmentBurlingtonUSA

Personalised recommendations