Diffusion and Gettering Simulations of Ion Implanted Copper in Polyimide

  • J. H. Das
  • J. E. Morris

Abstract

Recently we have observed gettering of ion-implanted copper in polyimide films. In this paper we have modeled the thermal process by incorporating the experimentally obtained dual activation energies into conventional diffusion models. The lower activation energy (small diffusant/substrate interaction) is associated with free atomic diffusion, while the larger activation energy (large diffusant/diffusant interaction) corresponds to diffusants with their movements restricted by clustering within the interaction distance of similar species. Computer simulations of the process validate the observed gettering mechanism via clustering. Experimental high temperature diffusion results are also in agreement with the simulation of the subsequent diffusion of clusters.

Keywords

Initial Cluster Rutherford Backscatter Spectroscopy Peak Region Free Atom Primary Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Shanker and J. R. MacDonald, J. Vac. Sci. Technol. A5, 2894 (1987).Google Scholar
  2. 2.
    F. K. LeGoues, B. D. Silverman and P. S. Ho, J. Vac. Sci. Technol., A6, 2200 (1988).Google Scholar
  3. 3.
    F. Faupel, D. Gupta, B. D. Silverman and P. S. Ho, Appl.Phys. Lett. 55, 357 (1989).CrossRefGoogle Scholar
  4. 4.
    J.E. Morris and J. H. Das, Technical Digest, Intl. Conf. VLSI & CAD Korea, 534 (1989).Google Scholar
  5. 5.
    J.E. Morris and J. H. Das, Proc. Second Intl. Conf. Solid State & Integrated Circuit Technol. China, (1989).Google Scholar
  6. 6.
    J. H. Das and J. E. Morris, J. Appl. Phys. 66, 5816 (1989).CrossRefGoogle Scholar
  7. 7.
    C. A. Wert and R. M. Thomson, “Physics of Solids”, p54, McGraw-Hill Book Company, 1964.Google Scholar
  8. 8.
    B. L. Crowder, J. F. Ziegler, F. F. Morehead and G.W. Cole, “Ion Implantation in Semiconductors and Other Materials”, p267, Plenum Press, New York, 1973.CrossRefGoogle Scholar
  9. 9.
    X. R. Wang, Y. Shapir and M. Rubinstein, J. Phys. All, L507 (1989).Google Scholar
  10. 10.
    T. Nagatani, Phys. Rev. A38, 2632 (1988).Google Scholar
  11. 11.
    H. E. Stanley, J. Phys. A10, L211 (1977).Google Scholar
  12. 12.
    S. R. Forrest and T. A. Witten, Jr., J. Phys. A12, L109 (1979).Google Scholar
  13. 13.
    T. A. Witten Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).CrossRefGoogle Scholar
  14. 14.
    M. Eden, in “Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability”, J. Neyman, editor, p223, University of California Press, 1961.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. H. Das
    • 1
  • J. E. Morris
    • 1
  1. 1.Department of Electrical Engineering, T. J. Watson School of Engineering, Applied Science and TechnologyState University of New YorkBinghamtonUSA

Personalised recommendations