Endothelial Cell Regrowth

  • Michael A. Reidy
  • Volkhard Lindner

Abstract

Endothelial cells, either in vivo or in vitro, grow as a monolayer and despite their key location in blood vessels and the important functions which they carry out, we know relatively little about the mechanisms which control their growth in vivo.1–3 This is perhaps because most endothelial cells, at least in vitro, were found to grow readily and little attention was given to understanding what factors might influence this process. The widespread use of vascular grafting and the discovery that reendothelialization is often severely limited,4–8 however, clearly demonstrate that endothelial growth and maintenance of an intact endothelial monolayer are not simple automatic processes. In this chapter we will discuss those experiments which have focused on understanding what factors are important in controlling endothelial cell replication and whether these factors can influence endothelial cell growth in the denuded blood vessel.

Keywords

Endothelial Cell Smooth Muscle Cell Balloon Catheter Basic Fibroblast Growth Factor Endothelial Cell Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abercrombie, M., 1970, Contact inhibition in tissue culture, In Vitro 6:128–142.PubMedCrossRefGoogle Scholar
  2. 2.
    Martz, E., and Steinberg, M.S., 1972, The role of cell-cell contact in “contact” inhibition of cell division: A review and new evidence, J. Cell. Physiol. 79:189–210.PubMedCrossRefGoogle Scholar
  3. 3.
    Heimark, R. L., and Schwartz, S. M., 1985, The role of membrane-membrane interactions in the regulation of endothelial cell growth, J. Cell Biol. 100:1934–1940.PubMedCrossRefGoogle Scholar
  4. 4.
    Goff, S. G., Wu, H. D., Sauvage, L. R., Usui, Y., Wechezak, A. R., Coan, D. E., Arnell, R. E., and Walker, M. W., 1988, Differences in reendothelialization after balloon catheter removal of endothelial cells, superficial endarterectomy, and deep endarterectomy, J. Vasc. Surg. 7:119–129.PubMedGoogle Scholar
  5. 5.
    Reidy, M. A., Clowes, A. W., and Schwartz, S. M., 1983, Endothelial regeneration. V. Inhibition of endothelial regrowth in arteries of rat and rabbit, Lab. Invest. 49:569–575.PubMedGoogle Scholar
  6. 6.
    Reidy, M. A., 1988, Endothelial regeneration. VIII. Interaction of smooth muscle cells with endothelial regrowth, Lab. Invest. 59:63–43.Google Scholar
  7. 7.
    Berger, K., Sauvage, L. R., Rao, A. M., and Wood, S. J., 1972, Healing of arterial prostheses in man: Its incompleteness, Ann. Surg. 175:118–127.PubMedCrossRefGoogle Scholar
  8. 8.
    Sauvage, L. R., Berger, K. E., Wood, S. J., Yates, S. G., Smith, J. C., and Mansfield, P. B., 1974, Interspecies healing of porous arterial prostheses, Arch. Surg. 109:698–705.PubMedCrossRefGoogle Scholar
  9. 9.
    Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature 273:345–349.PubMedCrossRefGoogle Scholar
  10. 10.
    Ingber, D. E., Madri, J. A., and Folkman, J., 1987, Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion, In Vitro Cell. Dev. Biol. 23: 387–394.PubMedCrossRefGoogle Scholar
  11. 11.
    Herbst, T. J., McCarthy, J. B., Tsilibary, E. C., and Furcht, L. T., 1988, Differential effects of laminin intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration, J. Cell Biol. 106:1365–1373.PubMedCrossRefGoogle Scholar
  12. 12.
    Form, D. M., Pratt, D. M., and Madri, J. A., 1986, Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components, Lab. Invest. 55:521–530.PubMedGoogle Scholar
  13. 13.
    Madri, J. A., Pratt, B. M., and Younariello-Brown, J., 1988, Matrix-driven cell size change modulates aortic endothelial cell proliferation and sheet migration, Am. J. Pathol. 132:18–27.PubMedGoogle Scholar
  14. 14.
    Lindner, V., Reidy, M. A., and Fingerle, J., 1989, Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth, Lab. Invest. 61:556–563.PubMedGoogle Scholar
  15. 15.
    Majesky, M. W., Reidy, M. A., Twardzik, D. R., and Schwartz, S. M., 1989, Production of type-I transforming growth factor beta (TGF-beta) during repair of arterial injury, FASEB J. 3:298.Google Scholar
  16. 16.
    Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988, Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 106:1375–1384.PubMedCrossRefGoogle Scholar
  17. 17.
    Madri, J. A., Reidy, M. A., Kocher, O., and Bell, L., 1989, Endothelial cell behavior after denudation injury is modulated by transforming growth factor beta-1 and fibronectin, Lab. Invest. 60:755–765.PubMedGoogle Scholar
  18. 18.
    Fràter-Schröder, M., Müller, G., Birchmeier, W., and Böhlen, P., 1986, Transforming growth factor beta inhibits endothelial cell proliferation, Biochem. Biophys. Res. Commun. 137:295–302.PubMedCrossRefGoogle Scholar
  19. 19.
    Heimark, R. L., Twardzik, D. R., and Schwartz, S. M., 1986, Inhibition of endothelial regeneration by type beta transforming growth factor from platelets, Science 233:1078–1080.PubMedCrossRefGoogle Scholar
  20. 20.
    Baird, D., and Durkin, T., 1986, Inhibition of endothelial cell proliferation by type beta-transforming growth factor: Interactions with acidic and basic fibroblast growth factors, Biochem. Biophys. Res. Commun. 138:476–482.PubMedCrossRefGoogle Scholar
  21. 21.
    Bell, L., and Madri, J. A., 1989, Effects of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells, Circ. Res. 65:1057–1065.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyazono, K., Hellmann, U., Wernstedt, C., and Heldin, C.-H., 1988, Latent high molecular weight complex of transforming growth factor beta-1. Purification from human platelets and structural characterization, J. Biol. Chem. 263:6407–6415.PubMedGoogle Scholar
  23. 23.
    Wakefield, L. M., Smith, D. M., Flanders, K. C., and Sporn, M. B., 1988, Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences, J. Biol. Chem. 263:7646–7654.PubMedGoogle Scholar
  24. 24.
    Haudenschild, C. C., and Schwartz, S. M., 1979, Endothelial regeneration. II. Restitution of endothelial continuity, Lab. Invest. 41:407–418.PubMedGoogle Scholar
  25. 25.
    Clowes, A. W., Reidy, M. A., and Clowes, M. M., 1983, Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium, Lab. Invest. 49:327–333.PubMedGoogle Scholar
  26. 26.
    Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R., and DAmore, P. A., 1989, An activated form of transforming growth factor beta is produced by co-culture of endothelial cells and pericytes, Proc. Natl. Acad. Sci. USA 986:4544–4548.CrossRefGoogle Scholar
  27. 27.
    Sato, Y., and Rifkin, D. B., 1989, Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor beta-1-like molecule by plasmin during co-culture, J. Cell Biol. 109:309–315.PubMedCrossRefGoogle Scholar
  28. 28.
    Fenselau A., Watt, S., and Mello, R. J., 1981, Tumor angiogenic factor, J. Biol. Chem. 256:9605–9611.PubMedGoogle Scholar
  29. 29.
    Brown, M. T., and Clemmons, D.R., 1986, Platelets contain a peptide inhibitor of endothelial cell replication and growth, Proc. Natl. Acad. Sci. USA 83:3321–3325.PubMedCrossRefGoogle Scholar
  30. 30.
    Miyazono, K., Okabe, T., Urabe, A., Yamanaka, M., and Takafu, F., 1985, A platelet factor that stimulates the proliferation of vascular endothelial cells, Biochem. Biophys. Res. Commun. 126:83–88.PubMedCrossRefGoogle Scholar
  31. 31.
    Sipes, N. J., Meyskens, F. L., and Bregman, M. D., 1986, Biological characterization of an acid-sensitive growth factor from human platelets: Role in the proliferation of human melanoma and bovine endothelial cells, Biochem. Biophys. Res. Commun. 138:795–802.PubMedCrossRefGoogle Scholar
  32. 32.
    Clemmons, D. R., Isley, W. L., and Brown, M. T., 1983, Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth, Proc. Natl. Acad. Sci. USA 80:1641–1645.PubMedCrossRefGoogle Scholar
  33. 33.
    King, G. L., and Buchwald, S., 1984, Characterization and partial purification of an endothelial cell growth factor from human platelets, J. Clin. Invest. 73:392.PubMedCrossRefGoogle Scholar
  34. 34.
    Miyazono, K., Okabe, T., Urabe, A., Takaku, F., and Heldin, C.-H., 1987, Purification and properties of an endothelial cell growth factor from human platelets, J. Biol. Chem. 262:4098–4103.PubMedGoogle Scholar
  35. 35.
    Ishikawa, F., Miyazono, K., Hellman, U., Drexler, H., Wernstedt, C., Hagiwara, K., Usuki, K., Takaku, F., Risau, W., and Heldin, C.-H., 1989, Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor, Nature 338:557–562.PubMedCrossRefGoogle Scholar
  36. 36.
    Miyazono, K., and Heldin, C.-H., 1989, High-yield purification of platelet-derived endothelial cell growth factor: Structural characterization and establishment of a specific antiserum, Biochemistry 78:1704.CrossRefGoogle Scholar
  37. 37.
    Usuki, K., Heldin, N.-E., Miyazono, K., Ishikawa, F., Takaku, F., Westermark, B., and Heldin, C.-H., 1989, Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture, Proc. Natl. Acad. Sci. USA 86:7427–7431.PubMedCrossRefGoogle Scholar
  38. 38.
    Jaye, M., Howk, R., Burgers, W., Ricca, G. A., Chiu, I. M., Ravera, M. W., O’Brien, S. J., Modi, W. S., Maciag, T., and Drohan, W. N., 1986, Human endothelial cell growth factor: Cloning, nucleotide sequence, and chromosome localization, Science 233:541–545.PubMedCrossRefGoogle Scholar
  39. 39.
    Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gospodarowicz, D., and Fiddes, J. C., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor, Science 233:545–458.PubMedCrossRefGoogle Scholar
  40. 40.
    Klagsbrun, M., and Vlodavsky, I., 1988, Biosynthesis and storage of basic fibroblast growth factor (bFGF) by endothelial cells: Implications for the mechanism of action of angiogenesis, in: Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications (A. Barbul, E. Pines, M. Caldwell, and T. K. Hunt, eds.), Liss, New York, pp. 55–61.Google Scholar
  41. 41.
    McNeil, P. L., Muthukrishnan, L., Warder, E., and D’Amore, P. A., 1989, Growth factors are released by mechanically wounded endothelial cells, J. Cell Biol. 109:811–822.PubMedCrossRefGoogle Scholar
  42. 42.
    Gajdusek, C. M., and Carbon, S., 1989, Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium, J. Cell. Physiol. 139:570–579.PubMedCrossRefGoogle Scholar
  43. 43.
    Bar, R. S., Boes, M., Booth, B. A., Dake, B. L., Henley, S., and Hart, M. N., 1989, The effects of platelet-derived growth factor in cultured microvessel endothelial cells, Endocrinology 124:1841–1848.PubMedCrossRefGoogle Scholar
  44. 44.
    Dicorleto, P. E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80:1919.PubMedCrossRefGoogle Scholar
  45. 45.
    Hermansson, M., Nister, M., Betsholtz, C., Heldin, C.-H., Westermark, B., and Funa, K., 1988, Endothelial cell hyperplasia in human glioblastoma: Coexpression of mRNA for platelet-derived growth factor (PDGF) b chain and PDGF receptor suggests autocrine growth stimulation, Proc. Natl., Acad. Sci. USA 85:7748–7752.CrossRefGoogle Scholar
  46. 46.
    Connolly, D. T., Olander, J. V., Heuvelman, D., Moonsell, R., Siegel, N., Haymore, B. L., Leimgruber, R., and Feder, J., 1989, Human vascular permeability factor, J. Biol. Chem. 264:20017–20024.PubMedGoogle Scholar
  47. 47.
    Connolly, D. T., Heuvelman, D., Nelson, R., Olander, J. V., Eppley, B. L., Delfino, J. J., Siegel, N. R., Leimgruber, R. M., and Feder, I., 1989, Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis, J. Clin. Invest. 84:1470–1478.PubMedCrossRefGoogle Scholar
  48. 48.
    Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T., 1989, Vascular permeability factor, an endothelial cell mitogen related to PDGF, Science 246:1309–1312.PubMedCrossRefGoogle Scholar
  49. 49.
    Henzel, W. J., and Ferrara, N., 1989, Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells, Biochem. Biophys. Res. Commun. 161:851–858.PubMedCrossRefGoogle Scholar
  50. 50.
    Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V., and Ferrara, N., 1989, Vascular endothelial growth factor is a secreted angiogenic mitogen, Science 246:1306–1309.PubMedCrossRefGoogle Scholar
  51. 51.
    Gospodarowicz, D., Abraham, J. A., and Schilling, J., 1989, Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculostellate cells, Proc. Natl. Acad. Sci. USA 86:7311–7315.PubMedCrossRefGoogle Scholar
  52. 52.
    Plouet, J., Schilling, J., and Gospodarowicz, D., 1989, Isolation and characterization of a newly identified endothelial cell mitogen produced by A+T-20 cells, EMBO J. 8:3801–3806.PubMedGoogle Scholar
  53. 53.
    Senger, D. R., Peruzzi, C. A., Feder, J., and Dvorak, H. F., 1986, A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines, Cancer Res. 46:5629–5632.PubMedGoogle Scholar
  54. 54.
    Thomas, K. A., 1987, Fibroblast growth factors, FASEB J. 1:434–440.PubMedGoogle Scholar
  55. 55.
    Baird, A., Esch, F., Mormede, P., Ueno, N., Ling, N., Böhlen, P., Ying, S.-Y., Wehrenberg, W. B., and Guillemin, R., 1986, Molecular characterization of fibroblast growth factor: Distribution and biological activities in various tissues, Recent Prog. Horm. Res. 42:143–205.PubMedGoogle Scholar
  56. 56.
    Gospodarowicz, D., 1989, Fibroblast growth factor, Crit. Rev. Oncogenesis 1:1–26.PubMedGoogle Scholar
  57. 57.
    Delli-Bovi, P., Curatola, A. M., Kern, F.G., Greco, A., Ittmann, M., and Basilico, C., 1987, An oncogene isolated by transfection of Kaposi sarcoma DNA encodes a growth factor that is a member of the FGF family, Cell 50:729–737.PubMedCrossRefGoogle Scholar
  58. 58.
    Taira, M., Yoshida, T., Miyagawa, K., Sakamoto, H., Terada, M., and Sugimura, T., 1987, cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activities, Proc. Natl. Acad. Sci. USA 84:2980–2984.PubMedCrossRefGoogle Scholar
  59. 59.
    Dickson, C., Smith, R., Brookes, S., and Peters, G., 1984, Tumorogenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region, Int-2, Cell 37:529–536.PubMedCrossRefGoogle Scholar
  60. 60.
    Dickson, C., and Peters, G., 1987, Potential oncogene product related to growth factors, Nature 326:833.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhan, X., Bates, B., Hu, X., and Goldfarb, M., 1988, The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors, Mol. Cell. Biol. 8:3487–3495.PubMedGoogle Scholar
  62. 62.
    Finch, P. W., Rubin, J. S., Miki, T., Ron, D., and Aaronson, S. A., 1989, Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth, Science 245:752–755.PubMedCrossRefGoogle Scholar
  63. 63.
    Burrus, L. W., and Olwin, B. B., 1989, Isolation of a receptor for acidic and basic fibroblast growth factor from embryonic chick, J. Biol. Chem. 264:18647–18653.PubMedGoogle Scholar
  64. 64.
    Lee, P., Johnson, D. E., Cousens, L. S., Fried, V. A., and Williams, L. T., 1989, Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor, Science 245:57–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Montesano, R., Vassali, J. D., Baird, A., Guillemin, R., and Orci, L., 1986, Basic fibroblast growth factor induces angiogenesis in vitro, Proc. Natl. Acad. Sci. USA 83:7297–7301.PubMedCrossRefGoogle Scholar
  66. 66.
    Hayek, A., Culler, F. L., Bearrie, G. M., Lopez, A. D., Cuevas, P., and Baird, A., 1987, In vivo model for study of the angiogenic effects of basic fibroblast growth factor, Biochem. Biophys. Res. Commun. 147:876–880.PubMedCrossRefGoogle Scholar
  67. 67.
    Folkman, J., and Klagsbrun, J., 1987, Angiogenic factors, Science 235:442–447.PubMedCrossRefGoogle Scholar
  68. 68.
    Mormède, P., Baird, A., and Pigeon, P., 1985, Immunoreactive fibroblast growth factor (FGF) in rat tissue: Molecular weight forms and effects of hypophysectomy, Biochem. Biophys. Res. Commun. 128:1108–1113.PubMedCrossRefGoogle Scholar
  69. 69.
    Gauthier, T., Maftouh, M., and Picard, C., 1987, Rapid enzymatic degradation of (125I)[Tyr10]FGF(1–10) by serum in vitro and involvement in the determination of circulating FGF by RIA, Biochem. Biophys. Res. Commun. 145:775–781.PubMedCrossRefGoogle Scholar
  70. 70.
    Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., and Gospodarowicz, D., 1987, Capillary endothelial cells express basic fibroblast growth factor, a mitogen that stimulates their own growth, Nature 325:257–259.PubMedCrossRefGoogle Scholar
  71. 71.
    Vlodavsky, I., Friedman, R., Sullivan, R., Sasse, J., and Klagsburn, M., 1987, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell-associated and platelet-derived growth factorlike protein which is secreted, J. Cell. Physiol. 131:402–428.PubMedCrossRefGoogle Scholar
  72. 72.
    Winkles, J. A., Friesel, R., Burgess, W. H., Mehlman, T., Weinstein, R., and Maciag, T., 1987, Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor), Proc. Natl. Acad. Sci. USA 84:7124–7128.PubMedCrossRefGoogle Scholar
  73. 73.
    Gospodarowicz, D., Ferrara, N., Haaparanta, T., and Neufeld, G., 1988, Basic fibroblast growth factor: Expression in cultured vascular smooth muscle cells, Eur. J. Cell Biol. 46:144–151.PubMedGoogle Scholar
  74. 74.
    Baird, A., Mormède, P., and Böhlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  75. 75.
    Vlodavsky, I., Folkman, J., and Sullivan, R., 1987, Endothelial cell-derived basic fibroblast growth factor; synthesis and deposition into subendothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.PubMedCrossRefGoogle Scholar
  76. 76.
    Baird, A., and Ling, N., 1987, Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: Implications for a role of heparinase-like enzymes in the neovascular response, Biochem. Biophys. Res. Commun. 142:428–435.PubMedCrossRefGoogle Scholar
  77. 77.
    Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodavsky, I., 1988, Heparin-binding angiogenic protein-basic fibroblast growth factor—is stored within basement membrane, Am. J. Pathol. 130:393–400.PubMedGoogle Scholar
  78. 78.
    Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodavsky, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparanase and heparin-like molecules, Biochemistry 28:1737–1743.PubMedCrossRefGoogle Scholar
  79. 79.
    Gajdusek, C. M., and Schwartz, S. M., 1982, Ability of endothelial cells to condition culture medium, J. Cell. Physiol. 110:35–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Reidy, M. A., and Schwartz, S. M., 1983, Endothelial injury and regeneration. IV. Endotoxin: A nondenuding injury to aortic endothelium, Lab. Invest. 48:25–34.PubMedGoogle Scholar
  81. 81.
    Reidy, M. A., 1985, Biology of disease. A reassessment of endothelial injury and arterial lesion formation, Lab. Invest. 53:513–520.PubMedGoogle Scholar
  82. 82.
    Fishman, R. A., Ryan, G. B., and Karnovsky, M. J., 1975, Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening, Lab. Invest. 32:339–351.PubMedGoogle Scholar
  83. 83.
    Ramsay, M. M., Walker, L. N., and Bowyer, D. E., 1982, Narrow superficial injury to rabbit aortic endothelium: The healing process as observed by scanning electron microscopy, Atherosclerosis 43:233.PubMedCrossRefGoogle Scholar
  84. 84.
    Reidy, A. M., and Schwartz, S. M., 1981, Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium, Lab. Invest. 44:301–308.PubMedGoogle Scholar
  85. 85.
    Reidy, M. A., and Silver, M., 1985, Endothelial regeneration. VII. Lack of intimai proliferation after defined injury to rat aorta, Am. J. Pathol. 118:173–177.PubMedGoogle Scholar
  86. 86.
    Reidy, M. A., Standaert, D., and Schwartz, S. M., 1982, Inhibition of endothelial cell regrowth. Cessation of aortic endothelial cell replication after balloon catheter denudation, Arteriosclerosis 2:216–220.PubMedCrossRefGoogle Scholar
  87. 87.
    Schwartz, S. M., Stemerman, M. B., and Benditt, E. P., 1975, The aortic intima. II. Repair of the aortic lining after mechanical denudation, Am. J. Pathol. 81:15–42.PubMedGoogle Scholar
  88. 88.
    Orlidge, A., and D’Amore, P. A., 1987, Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells, J. Cell Biol. 105:1455–1462.PubMedCrossRefGoogle Scholar
  89. 89.
    Reidy, M. A., Clowes, A. W., and Fingerle, J., 1989, Role of endothelium in the proliferation and migration of arterial smooth muscle cells, Excerpta Med. Int. Congr. Ser. 817:559.Google Scholar
  90. 90.
    Reidy, M. A., Chopek, M., Chao, S., McDonald, T., and Schwartz, S. M., 1989, Injury induces increase in von Willebrand factor in rat endothelial cells, Am. J. Pathol. 134:857–864.PubMedGoogle Scholar
  91. 91.
    Baumgartner, H. R., 1972, Platelet interaction with vascular structures, Thromb. Diath. Haemorrh. Suppl. 51:161–176.Google Scholar
  92. 92.
    Groves, H. M., Kinlough-Rathbone, R. L., Richardson, M., Moore, S., and Mustard, J. F., 1979, Platelet interaction with damaged rabbit aorta, Lab. Invest. 40:194–200.PubMedGoogle Scholar
  93. 93.
    Jørgensen, L., Grøthe, A. G., Groves, H. M., Kinlough-Rathbone, R. L., Richardson, M., and Mustard, J. F., 1988, Distribution of cellular responses in rabbit aorta following one and two injuries with a balloon catheter, Br. J. Exp. Pathol. 69:351–364.PubMedGoogle Scholar
  94. 94.
    Eldor, A., Falcone, D. J., Hajjar, D. P., Minick, C. R., Weksler, B. B., 1981, Recovery of prostacyclin production by deendothelialized rabbit aorta. Critical role of neointimal smooth muscle cells, J. Clin. Invest. 67:735–741.PubMedCrossRefGoogle Scholar
  95. 95.
    Baumgartner, H. R., and Studer, A., 1966, Folgen des Fefässkatheterismus am normo-und hyper-cholesterinaemischen Kaninchen, Pathol. Microbiol. 29:393.Google Scholar
  96. 96.
    Björkerud, S., 1969, Atherosclerosis initiated by mechanical trauma in normolipidemic rabbits, J. Atheroscler. Res. 9:209.PubMedCrossRefGoogle Scholar
  97. 97.
    Schwartz, S. M., Haudenschild, C. C., and Eddy, E. M., 1978, Endothelial regeneration. I. Quantitative analysis of intimai stages of intimai stages of endothelial regeneration in rat aortic intima, Lab. Invest. 38:568–580.PubMedGoogle Scholar
  98. 98.
    Schwartz, S. M., Stemerman, M. B., and Benditt, E. P., 1975, The aortic intima. II. Repair of the aortic lining after mechanical denudation, Am. J. Pathol. 81;15–42.PubMedGoogle Scholar
  99. 99.
    Spaet, T. H., Stemerman, M. B., Veith, F. J., and Lejnieks, I., 1975, Intimai injury and regrowth in the rabbit aorta: Medial smooth muscle cells as a source of neointima, Circ. Res. 36:58–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Stemerman, M. B., Spaet, T. H., Pitlick, F., Cintron, J., Lejnieks, I., and Tiell, M. L., 1977, Intimai healing: The pattern of reendothelialization and intimai thickening, Am. J. Pathol. 87:125–137.PubMedGoogle Scholar
  101. 101.
    Clowes, A. W., Collazzo, R. E., and Karnovsky, M. J., 1978, A morphologic and permeability study of luminal smooth muscle cells after arterial injury in the rat, Lab. Invest. 39:141–150.PubMedGoogle Scholar
  102. 102.
    Hirsch, E. Z., and Robertson, A. L., 1977, Selective acute arterial injury and repair. I. Methodology and surface characteristics, Atherosclerosis 28:271–287.PubMedCrossRefGoogle Scholar
  103. 103.
    Fingerle, J., Johnson, R., Clowes, A. W., and Reidy, M. A., 1989, Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery, Proc. Natl. Acad. Sci. USA 86:8412–8416.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Michael A. Reidy
    • 1
  • Volkhard Lindner
    • 1
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA

Personalised recommendations