Organotypic Endothelial Cell Surface Molecules Mediate Organ Preference of Metastasis

  • Bendicht U. Pauli
  • Robert C. Johnson
  • Marwan E. El-Sabban

Abstract

Metastases are tumor colonies that develop in distant, often multiple organ sites by dissemination from a malignant primary tumor. Although the most frequent organ sites of distant metastases are the first organs encountered by blood-borne tumor cells, many cancers metastasize to sites which are unrelated to the initial organ entered by circulating tumor cells and, thus, display unique organ colonization patterns that do not fit simple, anatomical-mechanical trapping theories of tumor cell dissemination.1–7 For example, breast adenocarcinomas metastasize frequently to liver, bone, brain, and adrenals, in addition to the expected, high incidence of metastasis to the lungs, and carcinomas of the prostate metastasize most often to bone. This nonrandom pattern of metastasis was first described by Paget,8 who championed the “seed and soil” hypothesis of the metastatic spread. He postulated that gross tumor development was a consequence of the provision of a fertile environment (the soil) in which compatible tumor cells (the seeds) could proliferate.4 Numerous studies on the mechanisms of preferential metastasis have since shown that tumor cell implantation, invasion, survival, and growth at secondary organ sites depend upon a number of tumor cell and host characteristics that provide the proper cellular and stromal environment for metastasis to develop.9–16

Keywords

Endothelial Cell Preferential Attachment Capillary Endothelial Cell Metastatic Tumor Cell Organ Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kinsey, D. L., 1960, An experimental study of preferential metastasis, Cancer 13:674–676.PubMedCrossRefGoogle Scholar
  2. 2.
    Patel, J. K., Didolkar, M. S., Pickren, J. W., and Moore, R. H., 1978, Metastatic pattern of malignant melanoma: A study of 216 autopsy cases, Am. J. Surg. 135:807–810.PubMedCrossRefGoogle Scholar
  3. 3.
    Sugarbaker, E. V., 1981, Patterns of metastasis in human malignancies, Cancer Biol. Rev. 2:235–303.Google Scholar
  4. 4.
    Hart, I. R., 1982, “Seed and soil” revisited: Mechanisms of site-specific metastasis, Cancer Metastasis Rev. 1:5–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Tarin, D., 1985, Clinical and experimental studies on the biology of metastasis, Biochim. Biophys. Acta 780: 227–235.PubMedGoogle Scholar
  6. 6.
    Graf, A. H., Buchberger, W., Langmayr, H., and Schmid, K. W., 1988, Site preference of metastatic tumors of the brain, Virchows Arch. A 412:493–498.CrossRefGoogle Scholar
  7. 7.
    Nicolson, G. L., 1988, Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites, Cancer Metastasis Rev. 7:143–188.PubMedCrossRefGoogle Scholar
  8. 8.
    Paget, S., 1889, The distribution of secondary growths in cancer of the breast, Lancet 1:571–573.CrossRefGoogle Scholar
  9. 9.
    Netland, P. A., and Zetter, B. R., 1984, Organ-specific adhesion of metastatic tumor cells in vitro, Science 224:1113–1115.CrossRefGoogle Scholar
  10. 10.
    Schirrmacher, V., 1985, Cancer metastasis: Experimental approaches, theoretical concepts and impacts for treatment strategies, Adv. Cancer Res. 43:1–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Weiss, L., 1985, Principles of Metastasis, Academic Press, New York.Google Scholar
  12. 12.
    Nicolson, G. L., 1986, Organ preference of metastasis, Prog. Clin. Biol. Res. 212:25–43.PubMedGoogle Scholar
  13. 13.
    Auerbach, R., 1988, Patterns of tumor metastasis: Organ selectivity in the spread of cancer cells, Lab. Invest. 58:361–364.PubMedGoogle Scholar
  14. 14.
    Nicolson, G. L., 1988, Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites, Biochim. Biophys. Acta 948:175–224.PubMedGoogle Scholar
  15. 15.
    Sher, B. T., Bargatze, R., Holzmann, B., Gallatin, W. M., Mathews, D., Wu, N., Picker, L., Butcher, E. C., and Weissman, I. L., 1988, Homing receptors and metastasis, Adv. Cancer Res. 51:361–390.PubMedCrossRefGoogle Scholar
  16. 16.
    Zetter, B. R., 1990, The cellular basis of site-specific tumor metastasis, N. Engl. J. Med. 322:605–612.PubMedCrossRefGoogle Scholar
  17. 17.
    Alby, L., and Auerbach, R., 1984, Differential adhesion of tumor cells to capillary endothelial cells in vitro, Proc. Natl. Acad. Sci. USA 81:5739–5743.PubMedCrossRefGoogle Scholar
  18. 18.
    Auerbach, R., Lu, W. C., Pardon, E., Gumkowski, F., Kaminska, G., and Kaminski, M., 1987, Specificity of adhesion between murine tumor cells and capillary endothelium: An in vitro correlate of preferential metastasis in vivo, Cancer Res. 47:1492–1496.Google Scholar
  19. 19.
    Roos, E., Tulp, A., Middelkoop, O. P., and van de Pavert, I. V., 1984, Interactions between lymphoid tumor cells and isolated liver endothelial cells, J. Natl. Cancer Inst. 72:1173–1180.PubMedGoogle Scholar
  20. 20.
    Bowman, P. D., Betz, A. L., Ar, D., Wolinsky, J. S., Penney, J. B., Shivers, R. R., and Goldstein, G. W., 1981, Primary culture of capillary endothelium from rat brain, In Vitro 17:353–362.PubMedCrossRefGoogle Scholar
  21. 21.
    Carson, M. P., and Haudenschild, C. C., 1986, Microvascular endothelium and pericytes: High yield, low passage cultures, In Vitro Cell Dev. Biol. 22:344–354.PubMedCrossRefGoogle Scholar
  22. 22.
    Folkman, J., Haudenschild, C. C., and Zetter, B. R., 1979, Long-term culture of capillary endothelial cells, Proc. Natl. Acad. Sci. USA 76:5217–5221.PubMedCrossRefGoogle Scholar
  23. 23.
    Borsum, T., Hagen, T., Henrickson, T., Hagen, I., Henriksen, T., and Carlander, B., 1982, Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture, Atherosclerosis 44:367–378.PubMedCrossRefGoogle Scholar
  24. 24.
    McAuslan, B. R., Hannan, G. N., and Reilly, W., 1982, Signals causing change in morphological phenotype, growth mode, and gene expression of vascular endothelial cells, J. Cell Physiol. 112:96–106.PubMedCrossRefGoogle Scholar
  25. 25.
    Rogers, K. A., and Kalnmus, V. I., 1983, Comparison of the cytoskeleton in aortic endothelial cells in situ and in vitro, Lab. Invest. 49:650–654.PubMedGoogle Scholar
  26. 26.
    deBono, D. P., and Green, C., 1984, The adhesion of different cell types to vascular endothelium: Effects of culture density and age, Br. J. Exp. Pathol. 65:145–154.Google Scholar
  27. 27.
    Bartlet, C. P., Heale, G., and Levene, C. I., 1985, Some factors regulating collagen polymorphism in cultured porcine and bovine aortic endothelium, Atherosclerosis 54:301–309.PubMedCrossRefGoogle Scholar
  28. 28.
    Belloni, P. N., and Nicolson, G. L., 1988, Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures, J. Cell. Physiol. 136:398–410.PubMedCrossRefGoogle Scholar
  29. 29.
    Reid, L., Morrow, B., Jubinsky, P., Schwartz, E., and Gatmaitan, Z., 1981, Regulation of growth and differentiation of epithelial cells by hormones, growth factors, and substrates of extracellular matrix, Ann. N.Y. Acad. Sci. 372:354–370.PubMedCrossRefGoogle Scholar
  30. 30.
    Wicha, M. S., Lowrie, G., Kohn, E., Bagavandass, P., and Mahn, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. USA 79:3213–3217.CrossRefGoogle Scholar
  31. 31.
    Gatmaitan, Z., Jefferson, D. M., Ruiz-Opazo, N., Biempica, L., Arias, I. M., Dudas, G., Leinwand, L. A., and Reid, L. M., 1983, Regulation of growth and differentiation of a rat hepatoma cell line by the synergistic interaction of hormones and collagenous substrate, J. Cell Biol. 97:1179–1190.PubMedCrossRefGoogle Scholar
  32. 32.
    Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  33. 33.
    Edelman, G. M., 1985, Cell adhesion and the molecular process of morphogenesis, Annu. Rev. Biochem. 54: 135–169.PubMedCrossRefGoogle Scholar
  34. 34.
    Montesano, R., 1986, Cell-extracellular matrix interactions in morphogenesis: An in vitro approach, Experientia 42:977–985.PubMedCrossRefGoogle Scholar
  35. 35.
    Carley, W. W., Milici, A. J., and Madri, J. A., 1988, Extracellular matrix specificity for the differentiation of capillary endothelial cells, Exp. Cell Res. 178:426–434.PubMedCrossRefGoogle Scholar
  36. 36.
    Pauli, B. U., and Lee, C. L., 1988, Organ preference of metastasis: The role of organ-specifically modulated endothelial cells, Lab. Invest. 58:379–387.PubMedGoogle Scholar
  37. 37.
    Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R., 1973, Culture of human endothelial cells derived from umbilical veins: Identification of morphological and immunological criteria, J. Clin. Invest. 52:2745–2758.PubMedCrossRefGoogle Scholar
  38. 38.
    Fidler, I. J., 1973, Selection of successive tumor lines for metastasis, Nature 242:148–149.Google Scholar
  39. 39.
    Pauli, B. U., Kellen, J. A., and Ng, R., 1987, Correlation of fibrinolytic activity with invasion and metastasis of R3230AC rat mammary carcinoma cell lines, Invasion Metastasis 7:158–171.PubMedGoogle Scholar
  40. 40.
    Hart, I. R., Talmadge, J. E., and Fidler, I. J., 1981, Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth, Cancer Res. 41:1281–1287.PubMedGoogle Scholar
  41. 41.
    Brunson, K. W., and Nicolson, G. L., 1978, Selection and biological properties of malignant variants of a murine lymphosarcoma, J. Natl. Cancer Inst. 61:1499–1502.PubMedGoogle Scholar
  42. 42.
    Kieler, J. F., 1984, Invasiveness of transformed bladder epithelial cells, Cancer Metastasis Rev. 3:265–296.PubMedCrossRefGoogle Scholar
  43. 43.
    Pauli, B. U., Anderson, S. N., Memoli, V. A., and Kuettner, K. E., 1980, Development of an in vitro and in vivo epithelial tumor model for the study of invasion, Cancer Res. 40:4571–4580.PubMedGoogle Scholar
  44. 44.
    Rojkind, M., Gatmaitan, Z., Mackensen, S., Gimbrone, M. A., Ponce, P., and Reid, L. M., 1980, Connective tissue biomatrix: Its isolation and utilization for long-term cultures of normal rat hepatocytes, J. Cell Biol. 87:255–263.PubMedCrossRefGoogle Scholar
  45. 45.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  46. 46.
    Glass, W. F., Briggs, R. C., and Hnilica, L. S., 1981, Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets, Anal. Biochem. 115:219–224.PubMedCrossRefGoogle Scholar
  47. 47.
    Heimark, R. L., and Schwartz, S. M., 1985, The role of membrane-membrane interactions in the regulation of endothelial cell growth, J. Cell Biol. 100:1934–1940.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  49. 49.
    Scott, R. E., 1976, Plasma membrane vesiculation: A new technique for isolation of plasma membranes, Science 194:743–745.PubMedCrossRefGoogle Scholar
  50. 50.
    Soule, H. R., Lanford, R. E., and Butel, J. S., 1982, Detection of simian virus 40 surface-associated large tumor antigen by enzyme-catalyzed radioiodination, Int. J. Cancer 29:337–344.PubMedCrossRefGoogle Scholar
  51. 51.
    Gallatin, W. M., Weissman, I. L., and Butcher, E. C., 1983, A cell surface molecule involved in organ specific homing of lymphocytes, Nature 304:30–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Roscu, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56:1045–1055.PubMedCrossRefGoogle Scholar
  53. 53.
    Siegelman, M. H., van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243:1165–1172.PubMedCrossRefGoogle Scholar
  54. 54.
    Stoolman, L. M., 1989, Adhesion molecules controlling lymphocyte migration, Cell 56:907–910.PubMedCrossRefGoogle Scholar
  55. 55.
    Butcher, E. C., 1990, Cellular and molecular mechanisms that direct leukocyte traffic, Am. J. Pathol. 136:3–11.PubMedGoogle Scholar
  56. 56.
    Stamper, H. B., Jr., and Woodruff, J. J., 1976, Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes to high-endothelial venules, J. Exp. Med. 144:828–833.PubMedCrossRefGoogle Scholar
  57. 57.
    Korach, S., Poupon, M. F., Du Villard, J. A., and Becker, M., 1986, Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers, Cancer Res. 46:3624–3629.PubMedGoogle Scholar
  58. 58.
    Kramer, R. H., and Nicolson, G. L., 1979, Interaction of tumor cells with vascular endothelial monolayers: A model for metastatic invasion, Proc. Natl. Acad. Sci. USA 76:5704–5708.PubMedCrossRefGoogle Scholar
  59. 59.
    Nicolson, G. L., Irimura, T., Nakajima, M., Irimura, T., Nakajima, M., and Estrada, J., 1984, Metastatic cell attachment to and invasion of vascular endothelium and its underlying basal lamina using endothelial cell monolayers, in: Cancer Invasion and Metastasis: Biological and Therapeutic Aspects (G. L. Nicolson and L. Milas, eds.), Raven Press, New York, p. 145.Google Scholar
  60. 60.
    Pressman, D., and Yagi, Y., 1964, Chemical differences in vascular beds, in: Small Blood Vessel Involvement in Diabetes Mellitus (A. R. Cowell and K. Meyer, eds.), Am. Inst. Biol. Sci., Washington, D.C., p. 177.Google Scholar
  61. 61.
    Simionescu, M., Simionescu, N., and Palade, G. E., 1982, Differentiated microdomains on the luminal surface of the capillary endothelium: Distribution of lectin receptors, J. Cell Biol. 94:406–413.PubMedCrossRefGoogle Scholar
  62. 62.
    Joseph, J., Miao, T., Alby, L., Grieves, J., Hauser, B., Kubai, I., Morrisey, L., Sidky, Y. A., Watt, S. A., and Auerbach, R., 1983, Immunological probes for the study of endothelial cell diversity, in: The Endothelial Cell—A Pluripotent Control Cell of the Vessel Wall (D. G. S. Thio-Korner and R. I. Fredshney, eds.), Karger, Basel, p. 55.Google Scholar
  63. 63.
    Auerbach, R., Alby, L., Morrisey, L. W., Tu, M., and Joseph, J., 1985, Expression of organ specific antigens on capillary endothelial cells, Microvasc. Res. 29:401–411.PubMedCrossRefGoogle Scholar
  64. 64.
    Mills, A. N., and Haworth, S. G., 1986, Changes in lectin binding patterns in the developing pulmonary vasculature of the pig, J. Pathol. 149:191–199.PubMedCrossRefGoogle Scholar
  65. 65.
    Irie, S., and Tavassoli, M., 1986, Mapping of the rat liver endothelial membrane with lectins and glycosylated ferritins, Am. J. Anat. 177:403–413.PubMedCrossRefGoogle Scholar
  66. 66.
    Johnson, R., Augustin-Voss, H., Zhu, D., and Pauli, B. U., 1991, Endothelial cell membrane vesicles in the study of organ preference of metastasis, Cancer Res. 51:394–399.PubMedGoogle Scholar
  67. 67.
    Rice, G. E., and Bevilacqua, M. P., 1989, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion, Science 246:1303–1306.PubMedCrossRefGoogle Scholar
  68. 68.
    Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., Jr., 1987, Identification of an inducible endothelial-leukocyte adhesion molecule, Proc. Natl. Acad. Sci. USA 84:9238–9242.PubMedCrossRefGoogle Scholar
  69. 69.
    Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107:321–331.PubMedCrossRefGoogle Scholar
  70. 70.
    Kaminski, M., and Auerbach, R., 1988, Tumor cells are protected from NK-cell mediated lysis by adhesion to endothelial cells, Int. J. Cancer 41:847–849.PubMedCrossRefGoogle Scholar
  71. 71.
    Orr, F. W., Adamson, I. Y., and Young, L., 1985, Pulmonary inflammation generates chemotactic activity for tumor cells and promotes lung metastasis, Am. Rev. Respir. Dis. 131:607–611.PubMedGoogle Scholar
  72. 72.
    Van den Brenk, H. A. S., Stone, M., Kelly, H., Orton, C., and Sharpington, C., 1974, Promotion of growth of tumor cells in acutely inflamed tissues, Br. J. Cancer 30:246–260.CrossRefGoogle Scholar
  73. 73.
    Weiss, L., Orr, F. W., and Honn, K. V., 1989, Interactions between cancer cells and the microvasculature: A rate-regulator for metastasis, Clin. Exp. Metastasis 7:127–167.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bendicht U. Pauli
    • 1
  • Robert C. Johnson
    • 1
  • Marwan E. El-Sabban
    • 1
  1. 1.Cancer Biology Laboratories, Department of Pathology, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations