Cellular and Molecular Mechanism of Glucose-Induced Diabetic Microangiopathy

  • Stuart K. Williams

Abstract

The cellular and biochemical changes which occur as a result of diabetes mellitus all can be traced, albeit both directly and indirectly, to elevated blood glucose concentrations. The eventual cure of this disease will result from our understanding of insulin synthesis by the pancreatic beta cell. Until this time, treatments for the pathologic sequelae of diabetic hyperglycemia will continue to be a major effort in diabetes research.

Keywords

Glomerular Basement Membrane Aldose Reductase Glomerular Endothelial Cell Hydrostatic Pressure Gradient Diabetic Angiopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sakamoto, N., Kinoshita, J. H., Kador, P. F., and Hotta, N. (eds.), 1988, Polyol pathway and its role in diabetic complications, in: Excerpta Medica International Congress Series 760, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Engerman, R., Bloodworm, J. M. B., Jr., and Nelson, S., 1977, Relationship of microvascular diabetes to metabolic control, Diabetes 26:760–769.PubMedCrossRefGoogle Scholar
  3. 3.
    Kador, P. F., 1988, The role of aldose reductase in the development of ocular diabetic complications, in: Complications of Diabetes Mellitus, Vol. 3 (B. Draznin, S. Melmed, and D. LeRoith, eds.), Liss, New York, pp. 103–114.Google Scholar
  4. 4.
    Kador, P. F., Robison, W. G., Jr., and Kinoshita, J. H., 1985, Pharmacology of aldose reductase inhibitors, Annu. Rev. Pharmacol. Toxicol. 25:691–714.PubMedCrossRefGoogle Scholar
  5. 5.
    Brownlee, M., Vlassara, H., and Cerami, A., 1984, Nonenzymatic glycosylation and the pathogenesis of diabetic complications, Ann. Intern. Med. 101:527–537.PubMedCrossRefGoogle Scholar
  6. 6.
    Yue, D. K., Morris, K., McLennas, S., and Turtle, J. R., 1980, Glycosylation of plasma protein and its relation to glycosylated hemoglobin in diabetes, Diabetes 29:296–300.PubMedGoogle Scholar
  7. 7.
    Dolhoffer, R., and Wieland, O. H., 1979, Glycosylation of serum albumin: Elevated glycosyl-albumin in diabetic patients, FEBS Lett. 103:282–286.CrossRefGoogle Scholar
  8. 8.
    Eble, A. S., Thorpe, S. R., and Baynes, J. W., 1983, Nonenzymatic glucosylation and glucose-dependent cross-linking of protein, J. Biol. Chem. 258:9406–9412.PubMedGoogle Scholar
  9. 9.
    Day, J. F., Thornburg, R. W., Thorpe, S. R., and Baynes, J. W., 1979, Nonenzymatic glucosylation of rat albumin, J. Biol. Chem. 254:9394–9400.PubMedGoogle Scholar
  10. 10.
    Olufemi, S., Talwar, D., and Robb, D. A., 1987, The relative extent of glycation of haemoglobin and albumin, Clin. Chim. Acta 163:125–136.PubMedCrossRefGoogle Scholar
  11. 11.
    Monnier, V. M., and Cerami, A., 1981, Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins, Science 211:491–493.PubMedCrossRefGoogle Scholar
  12. 12.
    Armbruster, D. A., 1987, Fructosamine: Structure, analysis, and clinical usefulness, Clin. Chem. 33:2153–2163.PubMedGoogle Scholar
  13. 13.
    Brownlee, M., 1988, The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy, in: Complications of Diabetes Mellitus, Vol. 3 (B. Draznin, S. Melmed, and D. LeRoith, eds.), Liss, New York, pp. 9–17.Google Scholar
  14. 14.
    Pongor, S., Ulrich, P. C., Bencsath, F. A., and Cerami, A., 1984, Aging of proteins: Isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose, Proc. Natl. Acad. Sci. USA 81:2684–2688.PubMedCrossRefGoogle Scholar
  15. 15.
    Rothschild, M. A., Oratz, M., and Schreiber, S. S., 1988, Serum albumin, Hepatology 8:385–401.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams, S. K., Devenny, J. J., and Bitensky, M. W., 1981, Micropinocytic ingestion of glycosylated albumin by isolated microvessels: Possible role in pathogenesis of diabetic microangiopathy, Proc. Natl. Acad. Sci. USA 78:2393–2397.PubMedCrossRefGoogle Scholar
  17. 17.
    Williams, S. K., and Solenski, N. J., 1984, Enhanced vesicular ingestion of nonenzymatically glucosylated proteins by capillary endothelium, Microvasc. Res. 28:311–321.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghiggeri, G. M., Candiano, G., Delfino, G., and Queirolo, C., 1984, Glycosyl albumin and diabetic microalbuminuria: Demonstration of an altered renal handling, Kidney Int. 25:565–570.PubMedCrossRefGoogle Scholar
  19. 19.
    McVerry, B. A., Hopp, A., Fisher, C., and Huehns, E. R., 1980, Production of pseudodiabetic renal glomerular changes in mice after repeated injections of glucosylated proteins, Lancet 1:738–740.PubMedCrossRefGoogle Scholar
  20. 20.
    Kowluru, A., Kowluru, R., Bitensky, M. W., Corwin, E.-J., Solomon, S. S., and Johnson, J. D., 1987, Suggested mechanism for the selective excretion of glucosylated albumin. The effects of diabetes mellitus and aging on this process and the origins of diabetic microalbuminuria, J. Exp. Med. 166:1259p–1279.PubMedCrossRefGoogle Scholar
  21. 21.
    Villaschi, S., Johns, L., Cirigliano, M., and Pietra, G., 1986, Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs, Microvasc. Res. 32:190–199.PubMedCrossRefGoogle Scholar
  22. 22.
    Layton, G. J., and Jerums, G., 1988, Effect of glycation of albumin on its renal clearance in normal and diabetic rats, Kidney Int. 33:673–676.PubMedCrossRefGoogle Scholar
  23. 23.
    Sampietro, T., Colantuoni, A., Lenzi, S., Berguglia, S., Bionda, A., and Donato, L., 1987, Increased permeability of hamster microcirculation to glycosylated albumin, Lancet 2:994–996.PubMedCrossRefGoogle Scholar
  24. 24.
    Mereish, K. A., Rosenberg, H., and Cobby, J., 1982, Glycosylated albumin and its influence on salicylate binding, J. Pharm. Sci. 71:235–238.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsuchiya, S., Sakurai, T., and Sekiguchi, S., 1984, Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas, Biochem. Pharmacol. 33:2967–2971.PubMedCrossRefGoogle Scholar
  26. 26.
    Garlick, R. L., and Mazer, J. S., 1983, The principal site of nonenzymatic glycosylation of human serum albumin in vivo, J. Biol. Chem. 258:6142–6146.PubMedGoogle Scholar
  27. 27.
    Bohney, J. P., Fonda, M. L., and Feldhoff, R. C., 1989, Nonenzymatic glycosylation and pyridozylation of human serum albumin: Site-specificity of Schiff base and ketoamine formation, FASEB J. 3:A926.Google Scholar
  28. 28.
    Williams, S. K., and Siegal, R. K., 1985, Preferential transport of nonenzymatically glucosylated ferritin across the kidney glomerulus, Kidney Int. 28:146–152.PubMedCrossRefGoogle Scholar
  29. 29.
    Predescu, D., Simionescu, M., Simionescu, N., and Palade, G. E., 1988, Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: Evidence that glycoalbumin behaves as a bifunctional ligand, J. Cell Biol. 107:1729–1738.PubMedCrossRefGoogle Scholar
  30. 30.
    Williams, S. K., Carter, D., McKenney, S. L., and Rose, D. G., 1988, Solubility dependent endocytosis of proteins by vascular endothelium, FASEB J. 2:A945.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Stuart K. Williams
    • 1
  1. 1.Department of SurgeryUniversity of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations