Radiation-Induced Cationic Curing of Vinyl Ethers

  • Stephen C. Lapin
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Recently there has been increasing interest in nonacrylate radiation-curable coatings. One factor that limits the choice of alternative chemical systems is the energy dose that is required to cure the coatings. Most UV-cured coatings are designed to cure with a dose of about 0.2 to 1.0 J/cm2. This corresponds to line speeds of about 20 to 100 m/min with two 80 W/cm medium-pressure mercury arc lamps. Most electron beam (EB)-cured coatings are cured with doses ranging from 2 to 10 Mrad. In spite of the fact that UV and EB irradiation are quite different in nature, simple energy unit conversions show that the total energy applied at the surface of the coating are actually quite similar for UV- and EB-cured coatings. Assuming a unit density liquid coating material applied at a thickness of 0.01 cm (ca. 4 mil), it follows that 2 Mrad = 20 J/g × 1 g/cm3 × 0.01 cm = 0.2 J/cm2.

Keywords

Vinyl Ether Electron Beam Irradiation Cationic Polymerization Divinyl Ether Epoxy Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see: J. V. Crivello, Adv. Polym. Sci. 62, 1 (1984).CrossRefGoogle Scholar
  2. 2.
    D. R. McKean, U. Schaedeli, and S. A. MacDonald, J. Polym. Sci. Polym. Chem. Ed. 27, 3927 (1989).CrossRefGoogle Scholar
  3. 3.
    W. R. Watt, in: UV Curing: Science and Technology (S. P. Pappas, ed.), Vol.11, p. 247, Technology Marketing Corp., Norwalk, Conn. (1985).Google Scholar
  4. 4.
    H. G. Gaube, Radcure′86 Conf. Proc, p. 15–27, Soc. Manuf. Eng., Dearborn, Mich. (1986).Google Scholar
  5. 5.
    J. V. Koleske, RadTech′88 Conf. Proc., p. 353, RadTech International, Northbrook, Ill. (1988).Google Scholar
  6. 6.
    J. V. Crivello, J. H. W. Lam, and C. N. Volante, J. Radiat. Curing 4(2), 2 (1977).Google Scholar
  7. 7.
    J. V. Crivello and J. L. Lee, Polym. Mater. Sci. Eng. Prepr. 60, 217 (1989).Google Scholar
  8. 8.
    J. V. Crivello and J. L. Lee, Macromolecular Synthesis, Vol. 9, p. 43 (1979).Google Scholar
  9. 9.
    For a review see: J. P. Kennedy and E. Maréchal, Carbocationic Polymerization, Wiley-Interscience, New York (1982).Google Scholar
  10. 10.
    H. K. Hall and M. Atsumi, Polym. Bull. 19, 319 (1988).CrossRefGoogle Scholar
  11. 11.
    D. H. Lorenz and N. B. Bikalcs, Encycl. Polym. Sci., Wiley-Interscience, New York (1964).Google Scholar
  12. 12.
    J. W. Reppe, Acetylene Chemistry, Charles A. Meyer, New York (1949).Google Scholar
  13. 13.
    J. V. Crivello, J. L. Lee, and D. A. Conlon, Radcure VI Conf. Proc, p. 4–28, Soc. Manuf. Eng., Dearborn, Mich. (1982).Google Scholar
  14. 14.
    J. A. Dougherty, F. J. Vara, and L. R. Anderson, in Ref. 4, p. 15-1.Google Scholar
  15. 15.
    GAF Corp., Wayne, N.J.Google Scholar
  16. 16.
    J. A. Dougherty and F. J. Vara, in Ref. 5, p. 372.Google Scholar
  17. 17.
    T. Suzuki and T. Tomono, J. Polym. Sci. Polym. Chem. Ed. 22, 2829 (1984).CrossRefGoogle Scholar
  18. 18.
    W. Hoelderich, N. Goetz, and L. Hupfer, U. S. Patent 4, 891, 451 (1990).Google Scholar
  19. 19.
    W. H. Watanabe and L. E. Conlon, J. Am. Chem. Soc. 79, 2828 (1957).CrossRefGoogle Scholar
  20. 20.
    M. A. Smith and K. B. Wagener, Polym. Prepr. 28(2), 264 (1987).Google Scholar
  21. 21.
    S. C. Lapin and J. R. Snyder, RadTech′90 Conf. Proc, Vol. I, p. 410, RadTech International, Northbrook, Ill. (1990).Google Scholar
  22. 22.
    S. C. Lapin, in Ref. 5, p. 395.Google Scholar
  23. 23.
    P.-E. Sundell, Cationic Polymerization of Vinyl Ethers Using Iodonium and Sulfonium Salts, Ph.D. thesis, Royal Institute of Technology, Stockholm (1990).Google Scholar
  24. 24.
    S. C. Lapin and S. A. Munk, U. S. Patent 4, 749, 807 (1988).Google Scholar
  25. 25.
    R. J. Bräutigam, S. C. Lapin, and J. R. Snyder, in Ref. 21, p. 99.Google Scholar
  26. 26.
    S. C. Lapin and D. W. House, U. S. Patent 4, 751, 273 (1988).Google Scholar
  27. 27.
    C.-H. Chang, G. K. Noren, J. J. Krajewski, and E. J. Murphy, Int. Patent Appl. WO 90/03989 (1990).Google Scholar
  28. 28.
    R. R. Gallucci and R. C. Going, J. Org. Chem. 48, 342 (1983).CrossRefGoogle Scholar
  29. 29.
    J. V. Crivello and D. A. Conlon, J. Polym. Sci. Polym. Chem. Ed. 21, 1785 (1983).CrossRefGoogle Scholar
  30. 30.
    J. V. Crivello and R. P. Eckberg, U. S. Patent 4, 617, 238 (1986).Google Scholar
  31. 31.
    R. Eckberg, in Ref. 5, p. 576.Google Scholar
  32. 32.
    S. C. Lapin, in Ref. 4, p. 15-15.Google Scholar
  33. 33.
    S. Jonsson, P.-E. Sundell, and A. Huit, in Ref. 21, p. 417.Google Scholar
  34. 34.
    J. L. Dektar and N. P. Hacker, J. Org. Chem. 55, 639 (1990).CrossRefGoogle Scholar
  35. 35.
    J. L. Dektar and N. P. Hacker, J. Am. Chem. Soc. 112, 6004 (1990).CrossRefGoogle Scholar
  36. 36.
    S. P. Pappas, Prog. Org. Coat. 13, 35 (1985).CrossRefGoogle Scholar
  37. 37.
    A. Ledwith, Macromol. Chem. Suppl. 3, 349 (1979).CrossRefGoogle Scholar
  38. 38.
    S. V. Nablo and E. P. Tripp, Radiat. Phys. Chem. 9, 325 (1977).Google Scholar
  39. 39.
    W. R. Watt, in Ref. 3, p. 277.Google Scholar
  40. 40.
    W. C. Hsieh, A. Deffieux, D. R. Squire, and V. Stannett, Polymer 23, 427 (1982).CrossRefGoogle Scholar
  41. 41.
    A. Hult and P.-E. Sundell, Polym. Mater. Sci. Eng. Prepr. 60, 453 (1989).Google Scholar
  42. 42.
    S. R. Sauerbrumm and D. C. Armbruster, in Ref. 21, p. 303.Google Scholar
  43. 43.
    C. Decker and K. Moussa, Polym. Mater. Sci. Eng. Prepr. 60, 547 (1989).Google Scholar
  44. 44.
    Y. Yagci and W. Schnabel, Macromol. Chem. Macromol. Symp. 13/14, 161 (1988).Google Scholar
  45. 45.
    J. V. Crivello, D. A. Conlon, D. R. Olsen, and K. K. Webb, Radcure Europe′87 Conf. Proc, p. 1–27, Soc. Manuf. Eng., Dearborn, Mich. (1987).Google Scholar
  46. 46.
    T. Nakamura, S. Aoshima, and T. Higashimura, Polym. Bull. 14, 515 (1985).CrossRefGoogle Scholar
  47. 47.
    M. Minoda, M. Sawamoto, and T. Higashimura, Polym. Bull. 17, 107 (1987).CrossRefGoogle Scholar
  48. 48.
    W. O. Choi, M. Sawamoto, and T. Higashimura, Polym. J. 19, 889 (1987).CrossRefGoogle Scholar
  49. 49.
    S. C. Lapin, Polym. Mater. Sci. Eng. Prepr. 61, 302 (1989).Google Scholar
  50. 50.
    B. L. Brann, RadTech Europe ′89 Conf Proc, p. 565, RadTech International, Fribourg, Switzerland (1989).Google Scholar
  51. 51.
    R. F. Eaton, B. D. Hanrahan, and J. K. Braddock, in Ref. 21, p. 384.Google Scholar
  52. 52.
    J. A. Dougherty and F. J. Vara, in Ref. 21, p. 402.Google Scholar
  53. 53.
    H. K. Hall, Angew. Chem. Int. Ed. Engl. 22, 440 (1983).CrossRefGoogle Scholar
  54. 54.
    T. Kokubo, S. Iwatsuki, and Y. Yamashita, Macromolecules 1, 482 (1968).CrossRefGoogle Scholar
  55. 55.
    T. Li, W. Cao, and X. Feng, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C29, 153 (1989).CrossRefGoogle Scholar
  56. 56.
    T. Li, B. Luo, G. Chu, and H. Hall, J. Polym. Sci.: Polym. Chem. Ed. 28, 1735 (1990).CrossRefGoogle Scholar
  57. 57.
    G. K. Noren, A. J. Tortorello, and J. T. Vandeberg, in Ref. 21, Vol. II, p. 201.Google Scholar
  58. 58.
    C. B. Friedlander and D. A. Diehl, Eur. Patent Appl. 322, 808 (1989).Google Scholar
  59. 59.
    G. K. Noren, Int. Patent Appl. WO 90/01512 (1990).Google Scholar
  60. 60.
    T. Okuyama, T. Fueno, J. Furukawa, and K. Uyeo, J. Polym. Sci. A 6, 1001 (1968).CrossRefGoogle Scholar
  61. 61.
    J. V. Crivello and D. A. Conlon, J. Polym. Sci. Polym. Chem. Ed. 22, 2105 (1984).CrossRefGoogle Scholar
  62. 62.
    J. G. Woods, J. M. Rooney, and S. J. Harris, U. S. Patent 4, 543, 397 (1985).Google Scholar
  63. 63.
    J. G. Woods and J. M. Rooney, U. S. Patent 4, 640, 849 (1987).Google Scholar
  64. 64.
    J. Ericsson and A. Hult, Polym. Bull. 18, 295 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Stephen C. Lapin
    • 1
  1. 1.Research and TechnologyAllied Signal, Inc.Des PlainesUSA

Personalised recommendations