Protein Adsorption to and Elution from Polyether Surfaces

  • Wayne R. Gombotz
  • Wang Guanghui
  • Thomas A. Horbett
  • Allan S. Hoffman
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Poly(ethylene oxide) (or PEO) surfaces represent an important class of biomaterials because of their low capacity for protein adsorption. A potentially wide range of applications exists for PEO surfaces including blood contacting devices, drug delivery systems, contact lenses, intraocular lenses, vascular grafts, catheters, immunoassays, biosensors, and media for protein and cell separations, to name a few.

Keywords

Ethylene Oxide Protein Adsorption Hydration Shell Cyanuric Chloride Fibrinogen Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. George, Blood 40, 862 (1972).PubMedGoogle Scholar
  2. 2.
    Y. L. Cheng, S. A. Darst, and C. R. Robertson, J Colloid Interface Sci. 118, 212 (1987).CrossRefGoogle Scholar
  3. 3.
    W. Wasiewski, M. J. Fasco, B. M. Martin, T. C. Detwiler, and J. W. Fenton, Thromb. Res. 8, 881 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    C. W. Hiatt, A. Shelokov, E. J. Rosenthal, and J. M. Galimore, J. Chromatogr. 56, 362 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    D. H. Randerson and J. A. Taylor, in: Plasmapheresis, New Trends in Therapeutic Applications (Y. Nose, P. S. Malchesky, and J. W. Smith, eds.), pp. 69–80, ISAO Press, Cleveland (1983).Google Scholar
  6. 6.
    L. Ilium, L. O. Jacobsen, R. H. Muller, E. Mak and S. S. Davis, Biomaterials 8, 113 (1987).CrossRefGoogle Scholar
  7. 7.
    S. S. Davis, S. J. Douglas, L. Ilium, P. D. Jones, E. Mak, and R. H. Muller, in: Targeting of Drugs with Synthetic Systems (G. Gregoriadis, J. Senior, and G. Poste, eds.), pp. 123–146, Plenum Press, New York (1985).Google Scholar
  8. 8.
    S. S. Davis and L. Ilium, Biomaterials 9, 111 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    J. B. Kayes and D. A. Rawlins, Colloid Polym. Sci. 257, 622 (1979).CrossRefGoogle Scholar
  10. 10.
    J. H. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res. 23, 35 (1989).Google Scholar
  11. 11.
    J. H. Lee, P. Kopeckova, J. Kopecek, and J. D. Andrade, Biomaterials 11, 455 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokoata, H. Tanzawa, and S. Nishiumi, in: Polymers as Biomaterials (S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett, eds.), pp. 361–374, Plenum Press, New York (1985).Google Scholar
  13. 13.
    Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif Internal Organs 28, 459 (1982).Google Scholar
  14. 14.
    D. E. Gregonis, D. E. Buerger, R. A. Van Wagenen, S. K. Hunter, and J. D. Andrade, Trans. 10th Annu. Meeting of the Society for Biomaterials, p. 266, Washington, D.C. (1984).Google Scholar
  15. 15.
    C. G. Golander, S. Jonsson, T. Vladkova, P. Stenius, and J. C. Eriksson, Colloids and Surfaces 21, 149 (1986).CrossRefGoogle Scholar
  16. 16.
    C. G. Golander and E. Kiss, J. Colloid Interface Sci. 121, 240 (1988).CrossRefGoogle Scholar
  17. 17.
    E. Kiss, C. Golander, and J. C. Eriksson, Prog. Colloid Polym. Sci. 74, 113 (1989).CrossRefGoogle Scholar
  18. 18.
    S. Winters, Immobilized Heparin Via A Long Chain Poly(ethylene oxide) Spacer for Protein and Platelet Compatibility, Doctoral Thesis, Department of Pharmaceutics, University of Utah (1987).Google Scholar
  19. 19.
    W. R. Gombotz, Poly(ethylene oxide) Surfaces: Synthesis, Characterization and Biological Interaction Studies, Doctoral Dissertation, Center for Bioengineering, University of Washington, Seattle, WA (1988).Google Scholar
  20. 20.
    W. R. Gombotz, W. Guanghui, and A. S. Hoffman, J. Appl. Polym. Sci. 37, 91 (1989).CrossRefGoogle Scholar
  21. 21.
    S. W. Kim, H. Jacobs, J. Y. Lin, C. Nojori, and T. Okano, Ann. N.Y. Acad. Sci. 516, 116 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    H. A. Jacobs, T. Okano, and S. W. Kim, J. Biomed. Mater. Res. 23, 611 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    D. K. Han, K. D. Park, K. Ahn, S. Y. Jeong, and Y. H. Kim, J. Biomed. Mater. Res. 23, 87 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    D. K. Han, S. Y. Jeong, and Y. H. Kim, J. Biomed. Mater. Res. Appl. Biomat. 23, 211 (1989).CrossRefGoogle Scholar
  25. 25.
    Y. Sun, W. R. Gombotz, and A. S. Hoffman, J. Bioactive and Compatible Polymers 1, 316 (1986).CrossRefGoogle Scholar
  26. 26.
    Y. Sun, A. S. Hoffman, and W. R. Gombotz, Am. Chem. Soc, Polym. Prepr. 28, 282 (1987).Google Scholar
  27. 27.
    Y. Sun, A. S. Hoffman, and W. R. Gombotz, Proc. 13th Annu. Meeting of the Society for Biomaterials, p. 266, Washington, D.C. (1987).Google Scholar
  28. 28.
    J. L. Brash, S. Uniyal, and Q. Samak, Trans. Am. Soc. Artif Internal Organs 20, 69 (1974).Google Scholar
  29. 29.
    V. Sa Da Costa, D. Brier-Russell, E. W. Salzman, and E. W. Merrill, J. Colloid Interface Sci. 80, 445 (1981).CrossRefGoogle Scholar
  30. 30.
    T. G. Grasel and S. L. Cooper, Biomaterials 7, 315 (1987).CrossRefGoogle Scholar
  31. 31.
    D. W. Grainger, C. Nojiri, T. Okano, and S. W. Kim, J. Biomed. Mater. Res. 23, 979 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    D. W. Grainger, K. Knutson, S. W. Kim, and J. Feijen, J. Biomed. Mater. Res. 24, 403 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    J. G. Bots, L. van der Does, and A. Bantjes, Biomaterials 7, 393 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    E. A. Merrill and E. W. Salzman, ASAIO J. 6, 60 (1983).Google Scholar
  35. 35.
    E. W. Merrill, E. W. Salzman, K. A. Dennison, S. W. Tay, and R. W. Pekala, Progress in Artificial Organs, 909 (1986).Google Scholar
  36. 36.
    N. B. Graham and M. E. McNeill, Biomaterials 5, 27 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Hermans, J. Chem. Phys. 77, 2193 (1982).CrossRefGoogle Scholar
  38. 38.
    D. H. Atha and K. C. Ingham, J. Biol. Chem. 258, 5710 (1983).Google Scholar
  39. 39.
    D. L. Coleman, D. E. Gregonis, and J. D. Andrade, J. Biomed. Mater. Res. 16, 362 (1982).CrossRefGoogle Scholar
  40. 40.
    F. F. Bailey and J. Y. Kolske, Poly(ethylene oxide), Academic Press, New York (1976).Google Scholar
  41. 41.
    F. F. Bailey and R. W. Callard, J. Appl. Polym. Sci. 1, 56 (1959).CrossRefGoogle Scholar
  42. 42.
    R. Kjellander, J. Chem. Soc, Faraday Trans. 2, 2025 (1982).Google Scholar
  43. 43.
    K. J. Liu and J. C. Parsons, Macromolecules 2, 529 (1969).CrossRefGoogle Scholar
  44. 44.
    W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res. 25, 1547 (1991).PubMedCrossRefGoogle Scholar
  45. 45.
    G. G. Hammes and P. B. Schimmel, J. Am. Chem. Soc. 89, 442 (1967).CrossRefGoogle Scholar
  46. 46.
    S. Saeki, N. Kawahara, N. Nakata, and M. Kaneko, Polymer 17, 685 (1976).CrossRefGoogle Scholar
  47. 47.
    G. Karlstrom, J. Phys. Chem. 89, 4962 (1985).CrossRefGoogle Scholar
  48. 48.
    R. Kjellander and E. Florin, J. Chem. Soc, Faraday Trans. 77, 2053 (1981).CrossRefGoogle Scholar
  49. 49.
    R. A. Home, J. P Almeida, A. F. Day, and N. J. Yu, J. Colloid Interface Sci. 35, 77 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Wayne R. Gombotz
    • 1
  • Wang Guanghui
    • 2
  • Thomas A. Horbett
    • 2
  • Allan S. Hoffman
    • 2
  1. 1.Pharmaceutical Research InstituteBristol-Myers SquibbSeattleUSA
  2. 2.Center for BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations