Properties of Immobilized PEG Films and the Interaction with Proteins

Experiments and Modeling
  • C.-G. Gölander
  • James N. Herron
  • Kap Lim
  • P. Claesson
  • P. Stenius
  • J. D. Andrade
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Poly(ethylene oxide), or as it is frequently denoted in the literature, poly-(ethylene glycol) (PEG), is a nonionic, water-soluble polymer widely used for stabilizing colloids in food and paints and in formulating pharmaceuticals and cosmetics. The reason for the extensive use of this polymer is that it acts as a dispersant and yet is inert, e.g., it does not interfere adversely with other functional ingredients in the dispersion.

Keywords

Cloud Point Mica Surface Unspecific Adsorption Dioctadecyl Dimethyl Ammonium ESCA Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Gregonis, C. M. Chen, and J. D. Andrade, in: Hydrogels for Medical and Related Applications (J. D. Andrade, ed.), ACS Symp. Ser. 31, 88 (1973).Google Scholar
  2. 2.
    C.-G. Gölander, S. Jönsson, T. Vladkova, P. Stenius, and J.-C. Eriksson, Colloids and Surfaces 21, 149 (1986).CrossRefGoogle Scholar
  3. 3.
    P. Drude, Ann. Phys. 272, 532, 865 (1889).CrossRefGoogle Scholar
  4. 4.
    J. N. Israelachvili and G. E. Adams, J. Chem. Soc, Faraday Trans. 1, 74, 975 (1978).Google Scholar
  5. 5.
    P. C. Herder, P. M. Claesson, and C. E. Herder, J. Colloid Interface Sci. 119, 240 (1988).Google Scholar
  6. 6.
    A. Abuchowski, T. van Es, N. C. Palczuk, and F. Davis, J. Biol. Chem. 252, 3578 (1977).PubMedGoogle Scholar
  7. 7.
    A. F. Bückmann, M. Morr, and G. Johansson, Makromol. Chem. 182, 1379 (1981).CrossRefGoogle Scholar
  8. 8.
    S. Zalipsky, C. Gilon, and A. Zilkha, Eur. Polym. J. 19, 1177 (1983).CrossRefGoogle Scholar
  9. 9.
    J. M. Harris, E. C. Struck, M. G. Case, and M. S. Paley, J. Polym. Sci. 22, 341 (1984).Google Scholar
  10. 10.
    J. M. Harris, K. Yoshinaga, M. S. Paley, and M. R. Herati, in: Advances in Separations Using Aqueous Phase Systems in Cell Biology and Biotechnology (D. Fisher and I. A. Sutherland, eds.), Plenum Press, London (1988).Google Scholar
  11. 11.
    J. M. Harris, Rev. Macromol. Chem. Phys. C25, 325 (1985).CrossRefGoogle Scholar
  12. 12.
    M. S. Paley and J. M. Harris, J. Polym. Sci. 25, 2447 (1987).Google Scholar
  13. 13.
    F. E. Bailey, Jr. and R. W. Callard, J. Appl. Polym. Sci. 1, 56 (1959).CrossRefGoogle Scholar
  14. 14.
    E. Kiss, C-G. Gölander, and J. C. Eriksson, Progr. Colloid & Polymer Sci. 74, 113–119 (1987).CrossRefGoogle Scholar
  15. 15.
    J. L. Parker, D. L. Cho, and P. M. Claesson, J. Phys. Chem. 93, 6121 (1989).CrossRefGoogle Scholar
  16. 16.
    C.-G. Gölander and J.-C. Eriksson, J. Colloid Interface Sci. 119, 38 (1987).CrossRefGoogle Scholar
  17. 17.
    J.-C. Eriksson, C.-G. Gölander, A. Baszkin, and L. Ter-Minassian-Saraga, J. Colloid Interface Sci. 100, 2 (1984).CrossRefGoogle Scholar
  18. 18.
    W. R. Gombotz, W. Guanghui, and A. S. Hoffman, J. Appl. Polym. Sci. 37, 91 (1989).CrossRefGoogle Scholar
  19. 19.
    C.-G. Gölander, M. W. Rutland, D. L. Cho, A. Johansson, H. Ringblom, S. Jönsson, and H. K. Yasuda, J. Appl. Polym. Sci., submitted.Google Scholar
  20. 20.
    E. Kiss and E. Gölander, Colloids and Surfaces 49, 335–342 (1990).CrossRefGoogle Scholar
  21. 21.
    C.-G. Gölander and E. Kiss, Colloids and Surfaces, submitted.Google Scholar
  22. 22.
    P. M. Claesson and C.-G. Gölander, J. Colloid Interface Sci. 117, 366 (1987).CrossRefGoogle Scholar
  23. 23.
    John Yee, Synthesis and Interfacial Coupling of Mercapto Activated Poly(ethyleneoxide) via Thiol-Disulphide Interchange, M.Sc. Thesis, Dept. of Bioengineering, University of Utah, Salt Lake City.Google Scholar
  24. 24.
    H. L. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res. 23, 351 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Silverstone and K. Kronberg, J. Phys. Chem. 93, 6241 (1989).CrossRefGoogle Scholar
  26. 26.
    R. Kjellander and E. Florin-Robertsson, J. Chem. Soc, Faraday Trans. 1, 77, 2053 (1981).Google Scholar
  27. 27.
    S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 17, 685 (1976).CrossRefGoogle Scholar
  28. 28.
    R. E. Goldstein, J. Chem. Phys. 80, 5340 (1984).CrossRefGoogle Scholar
  29. 29.
    G. Karlström, J. Phys. Chem. 89, 4962 (1985).CrossRefGoogle Scholar
  30. 30.
    A. A. Samii, B. Lindman, and G. Karlström, Prog. Colloid Polym. Sci. 82, 1 (1990).Google Scholar
  31. 31.
    M. Björling, P. Linse, and G. Karlström, J. Phys. Chem. 94, 471 (1990).CrossRefGoogle Scholar
  32. 32.
    P. G. de Gennes, Macromolecules 13, 1069 (1980).CrossRefGoogle Scholar
  33. 33.
    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. de Gennes, in press.Google Scholar
  34. 34.
    DISCOVER. A molecular simulation program from Biosym Technologies, 10065 Barnes Canyon Road, San Diego, CA 92121.Google Scholar
  35. 35.
    W. L. Jörgensen, J. Chem. Phys. 77, 5757 (1982).CrossRefGoogle Scholar
  36. 36.
    J. L. Valles and J. W. Halley, J. Chem. Phys. 92, 694 (1990).CrossRefGoogle Scholar
  37. 37.
    P. J. Flory, Statistical Mechanics of Chain Molecules, Chapter 5, Hanser Publishers, New York (1989).Google Scholar
  38. 38.
    P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osgutholpe, J. Wolff, M. Genest, and A. T. Hagler, Proteins, Structure, Function and Genetics 4, 31 (1988).CrossRefGoogle Scholar
  39. 39.
    J. Klein and P. F. Luckham, Macromolecules 17, 1041 (1984).CrossRefGoogle Scholar
  40. 40.
    P. M. Claesson, R. Kjellander, S. Stenius, and H. K. Christensen, J. Chem. Soc, Faraday Trans. 82, 2735 (1986).CrossRefGoogle Scholar
  41. 41.
    P. M. Claesson, D. L. Cho, C.-G. Gölander, E. Kiss, and J. L. Parker, Prog. Colloid Polym. Sci. 82, 330–336 (1990).CrossRefGoogle Scholar
  42. 42.
    E. Kiss and C.-G. Gölander, J. Colloid and Interface Sci. 117, 366–374 (1987).CrossRefGoogle Scholar
  43. 43.
    Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Internal Organs 28, 459 (1982).Google Scholar
  44. 44.
    K. Nilsson Ekdahl, B. Nilsson, C.-G. Gölander, B. Lassen, H. Elwing, and U. R. Nilsson, J. Biomed. Mater. Res., submitted.Google Scholar
  45. 45.
    W. R. Gombotz, W. Guanghui, A. S. Hoffman, and T. A. Horbett, Proc. The Third World Biomater. Congr., Kyoto, Japan (April 21-25, 1988).Google Scholar
  46. 46.
    Y-S. Yeh, Y. Iriyama, Y. Matsuzawa, S. R. Hanson, and H. Yasuda, J. Biomed. Mater. Res. 22, 795 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    H. J. Taunton, C. Toprakciouglu, L. J. Fetters, and J. Klein, Macromolecules 23, 571 (1990).CrossRefGoogle Scholar
  48. 48.
    S. Patel, M. Tirell, and G. Hadziioannou, Colloids and Surfaces 31, 157 (1988).CrossRefGoogle Scholar
  49. 49.
    F. E. Bailey and J. V. Koleske, Polyethyleneoxide, Academic Press, New York (1976).Google Scholar
  50. 50.
    P. A. Cuypers, W. T. Hermens, and H. C. Hemker, N.Y. Acad. Sci. 283, 77 (1977).CrossRefGoogle Scholar
  51. 51.
    E. Kiss and C-G. Gölander, Colloids and Surfaces 58, 263–270 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • C.-G. Gölander
    • 1
  • James N. Herron
    • 2
  • Kap Lim
    • 2
  • P. Claesson
    • 3
    • 4
  • P. Stenius
    • 1
  • J. D. Andrade
    • 5
  1. 1.Institute for Surface ChemistryStockholmSweden
  2. 2.Center for Biopolymers at Interfaces, and Departments of Bioengineering and PharmaceuticsUniversity of UtahSalt Lake CityUSA
  3. 3.The Surface Force GroupThe Royal Institute of TechnologyStockholmSweden
  4. 4.Institute for Surface ChemistryStockholmSweden
  5. 5.Center for Biopolymers at Interfaces, and Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations