PEG-Modified Hemoglobin as an Oxygen Carrier

  • Kwang Nho
  • Samuel Zalipsky
  • Abraham Abuchowski
  • Frank F. Davis
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

A need is strongly recognized for a safe red cell substitute that can carry oxygen to the hypoxic tissues of an anemic body. Banked blood is in short supply because of mounting fears of donors and limited storage life. A safe, stable, oxygen carrier would eliminate many problems such as cross-matching of blood types, danger of virus infections, short shelf life, and availability. Not only could this be used as an oxygen-carrying plasma expander for trauma victims and patients in surgery, such as cardiac bypass and angioplasty, this product could also be used as a perfusate for the preservation of isolated organs for transplantation. Cold storage is the popular choice for preservation at present, but there is an increasing demand for a safe organ perfusate that would promote the use of perfusion preservation to obtain a longer period of preservation.

Keywords

Hill Coefficient Oxygen Carrier Hemoglobin Molecule Bile Excretion Plasma Hemoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J G. Riess and M. LeBlanc, in Blood Substitutes (K. C. Lowe, ed.), pp. 94–129, VCH, New York (1988).Google Scholar
  2. 2.
    S. E. Rabiner, J. R. Helbert, H. Lopas, and L. H. Friedman, J. Exp. Med. 126, 1127 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    S. C. Tarn, J. Blumenstein, and J. T. E Wong, Proc. Natl. Acad. Sci. U.S.A. 73, 2128 (1976).CrossRefGoogle Scholar
  4. 4.
    J. E. Baldwin, B. Gill, and J. P Whitten, Tetrahedron 37, 1723 (1981).CrossRefGoogle Scholar
  5. 5.
    K. Ajisaka, Ajinomoto KK., 82-04281E/03 (1982).Google Scholar
  6. 6.
    K. Iwasaki and Y. Iwashita, Artif. Org. 10(5), 411 (1986).CrossRefGoogle Scholar
  7. 7.
    Y. Iwashita, A. Yabuki, K. Yamaji, K. Iwasaki, T. Okami, C. Hirata, and K. Kosaka, Biomater. Artif. Cells Artif. Org. 16(1–3), 271 (1988).Google Scholar
  8. 8.
    P. Labrude, P. Mouelle, P. Menu, C. Vigneron, E. Dellacherie, M. Leonard, and J. L. Tayot, Int. J. Artif. Org. 11(5), 393 (1988).Google Scholar
  9. 9.
    M. Leonard and E. Dellacherie, Biochem. Biophys. Acta 791, 219 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Matsushita, A. Yabuki, P. S. Malchesky, H. Harasaki, and Y. Nose, Biomater. Artif. Cells. Artif Org. 16(1–3), 247 (1988).Google Scholar
  11. 11.
    A. Yabuki, K. Yamaji, H. Ohki, and Y. Iwashita, Transfusion 30, 516 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Zalipsky, R. Seltzer, and K. Nho, Polymer Preprints 31(2), 173 (1990).Google Scholar
  13. 13.
    D. Zygmunt, M. Leonard, E Bonneaux, D. Sacco, and E. Dellacherie, Int. J. Biol. Macromol. 9, 343 (1987).CrossRefGoogle Scholar
  14. 14.
    J. W. Payne, Biochem. J. 135, 867 (1973).PubMedGoogle Scholar
  15. 15.
    K. Bonhard and V. Boyson, Dtsch. Ans legeschrift 24, 885 (1976).Google Scholar
  16. 16.
    E. DeVenuto and A. Zegna, J. Surg. Res. 34, 205 (1982).CrossRefGoogle Scholar
  17. 17.
    H. I. Friedman, F. DeVenuto, B. D. Schwartz, and T. J. Nemeth, Surg., Gynecol. Obstet. 159, 429 (1984).Google Scholar
  18. 18.
    N. Kothe, B. Eichentoff, and K. Bonhard, Surg., Gynecol. Obstet. 161, 563 (1985).Google Scholar
  19. 19.
    D. H. Marks, J. E. Lynet, R. M. Letscher, R. P. Teneyck, A. D. Schaerle, and G. T. Makovec, Military Med. 152, 265 (1987).Google Scholar
  20. 20.
    L. R. Sehgal, S. A. Gould, A. L. Rosen, H. L. Sehgal, and G. S. Moss, Surgery 95, 433 (1984).PubMedGoogle Scholar
  21. 21.
    A. Abuchowski, T. van Es, C. Palczuk, and F. F. Davis, J Biol. Chem. 252(11), 3578 (1977).PubMedGoogle Scholar
  22. 22.
    F. F. Davis, T. van Es, and N. C. Palczuk, U.S. Patent #4,179,337 (1979).Google Scholar
  23. 23.
    S. Zalipsky, R. Seltzer, and K. Nho, Polymeric Drugs and Drug Delivery Systems (R. L. Dunn and R. M. Ottenbrite, eds.), pp. 91-100, ACS Symposium Series 469 (1999).Google Scholar
  24. 24.
    K. Ajisaka and Y. Iwashita, Biochem. Biophys. Res. Commun. 97(3), 1076 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Matsushita, Y. Iwashita, and K. Iwasaki, Trans. Am. Soc. Artif. Internal Org. 32, 490 (1986).CrossRefGoogle Scholar
  26. 26.
    P. E. Keipert and T. M. S. Chang, Trans. Am. Soc. Artif. Internal. Org. 29, 329 (1983).Google Scholar
  27. 27.
    M. Matsushita and A. Yabuki, Trans. Am. Soc. Artif. Internal Org. 33, 352 (1987).Google Scholar
  28. 28.
    M. Feola, J. Simoni, R. Tran, and P. C. Canizaro, Biomater. Artif. Cells Artif. Org. 16(1–3), 217 (1988).Google Scholar
  29. 29.
    B. Halliwell and J. M. C. Gutteridge, Arch. Biochem. Biophys. 246, 501 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    A. E. Faassen, S. R. Sundby, S. S. Panter, R. M. Condie, and B. E. Hedlund, Biomater. Artif Cells Artif. Org. 16(1–3), 93 (1988).Google Scholar
  31. 31.
    Draft Points to Consider in the Safety Evaluation of Hemoglobin-Based Oxygen Carriers, U.S. FDA Center for Biologics Evaluation and Research (1990).Google Scholar
  32. 32.
    S. Fuchinoue, I. Nakajima, T. Agishi, S. Teraoka, T. Kawai, H. Honda, and K. Ota, Trans. Am. Soc. Artif. Internal Org. 33, 390 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kwang Nho
    • 1
  • Samuel Zalipsky
    • 1
  • Abraham Abuchowski
    • 1
  • Frank F. Davis
    • 1
  1. 1.Enzon, Inc.South PlainfieldUSA

Personalised recommendations