Endogenous Opioids and Stress Reactivity in the Development of Essential Hypertension
Chapter
Abstract
The mechanistic bases of individual differences in cardiovascular stress reactivity are not fully understood. Variations in blood pressure and heart rate reactivity are believed to correspond to autonomic nervous system activity, but the precise neuroendocrine origins of these response differences have not been characterized. Equally deficient is an appreciation of the clinical significance of these individual differences in reactivity. This chapter will highlight a series of experiments designed to investigate the neuroendocrine origin and possible clinical significance of individual differences in cardiovascular reactivity during behavioral stress.
Keywords
Blood Pressure Response Endogenous Opioid Autonomic Nervous System Activity Heart Rate Reactivity Blood Pressure Reactivity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Blumenthal, J. A., & McCubbin, J. A. (1987). Physical exercise as stress management. In A. Baum & J. E. Singer (Eds.), Handbook of psychology and health: Volume V: stress (pp. 303–331). Hillsdale: Erlbaum.Google Scholar
- Faden, A., & Holaday, J. W. (1979). Opiate antagonists: A role in treatment of hypovolemic shock. Science, 205, 317–318.PubMedCrossRefGoogle Scholar
- Faden, A., Jacobs, T., & Holaday, J. A. (1980). Endorphin parasympathetic interaction in spinal shock. Journal of the Autonomic Nervous System, 2, 295–304.PubMedCrossRefGoogle Scholar
- Falkner, B., Onesti, G., Angelakos, E. T., Fernandes, M., & Langman, C. (1979). Cardiovascular response to mental stress in normal adolescents with hypertensive parents. Hypertension, 1, 23–30.PubMedCrossRefGoogle Scholar
- Farsang, C., Ramirez-Gonzales, M. D., & Kunos, G. (1980). Possible role of an endogenous opiate in the cardiovascular effects of central alpha adrenoreceptor stimulation in spontaneously hypertensive rats. Journal of Pharmacology and Experimental Therapeutics, 214, 203–208.PubMedGoogle Scholar
- Farsang, C., Kaposci, J., Varga, K., Malisak, Z., Fekete, M., & Kunos, G. (1984). Reversal of the antihypertensive action of clonidine: Involvement of the sympathetic nervous system. Circulation, 69, 461–467.PubMedCrossRefGoogle Scholar
- Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–504.PubMedGoogle Scholar
- Glass, D. C., Krakoff, L. R., Contrada, R., Hilton, W. F., Kehoe, K., Mannucci, E. G., Collins, C., Snow, B., & Elting, E. (1980). Effects of harassment and competition on cardiovascular and plasma catecholamine in Type A and Type B individuals. Psychophysiology, 17, 453–463.PubMedCrossRefGoogle Scholar
- Gutkowska, J., Julesz, J., St. Louis, J., & Genest, J. (1982). Radioimmunoassay of corticotropin from plasma. Clinical chemistry, 28, 2228–2234.Google Scholar
- Guyton, A. C., Coleman, T. G., Bower, J. D., & Granger, H. J. (1970). Circulatory control in hypertension. Circulation Research, 26–27 (2), 135–137.Google Scholar
- Hassen, A. H., & Feuerstein, G. (1987). Mu-opioid receptors in NTS elicit pressor responses via sympathetic pathways. American Journal of Physiology, 252, H156–H162.PubMedGoogle Scholar
- Hastrup, J. L., Light, K. C., & Obrist, P. A. (1982). Parental hypertension and cardiovascular response to stress in healthy young adults. Psychophysiology, 19, 615–622.PubMedCrossRefGoogle Scholar
- Holaday, J. W. (1983). Cardiovascular effects of endogenous opiate systems. Annual Review of Pharmacology and Toxicology, 23, 541–594.PubMedCrossRefGoogle Scholar
- Holaday, J. W., D’Amato, R., Ruvio, B., & Faden, A. (1983). Action of naloxone and TRH on the autonomic regulation of circulation. In E. Costa & M. Trabucchi (Eds.), Regulatory peptides from molecular biology to function (pp. 353–361). New York: Raven Press.Google Scholar
- Julius, S. (1976). Neurogenic component in borderline hypertension. In S. Julius & M. Esler (Eds.), The nervous system in arterial hypertension (pp. 301–330). Springfield: Thomas.Google Scholar
- Kilts, C. D., Gooch, M. D., & Knopes, K. D. (1984). Quantitation of plasma catecholamines by online trace enrichment high performance liquid chromatography with electrochemical detection. Journal of Neuroscience Methods, 11, 257–273.PubMedCrossRefGoogle Scholar
- Kiritsy-Roy, J. A., Appel, N. M., Bobbitt, F. G., & Van Loon, G. R. (1986). Effects of mu-opioid receptor stimulation in the hypothalamic paraventricular nucleus on basal and stress-induced catecholamine secretion and cardiovascular responses. Journal of Pharmacology and Experimental Therapeutics, 289, 8142nd822.Google Scholar
- Konishi, S., Tsuno, A., & Otsuka, M. (1979). Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature (London), 282, 515–516.CrossRefGoogle Scholar
- Kraft, K., Theobald, R., Kolloch, R., & Stumpe, K. O. (1987). Normalization of blood pressure and plasma concentrations of beta-endorphin and leucine-enkephalin in patients with primary hypertension after treatment with clonidine. Journal of Cardiovascular Pharmacology, 10(12), S147–S151.PubMedCrossRefGoogle Scholar
- Lang, R. E., Gaida, W., Ganten, D., Hermann, K., Kraft, K., & Unger, T. (1983). In D. Ganten & D. Pfaff (Eds.), Central cardiovascular control (pp. 103–123). Berlin: Springer-Verlag.CrossRefGoogle Scholar
- Langer, A. W., Obrist, P. A., & McCubbin, J. A. (1979). Hemodynamic and metabolic adjustments during exercise and shock avoidance in dogs. American Journal of Physiology, 236, H225–H230.PubMedGoogle Scholar
- Langer, A. W., McCubbin, J. A., Stoney, C. M., Hutcheson, J. S., Charlton, J. D., & Obrist, P. A. (1985). Cardiopulmonary adjustments during exercise and an aversive reaction time task: Effects of beta-adrenoceptor blockade. Psychophysiology, 22, 59–68.PubMedCrossRefGoogle Scholar
- Leon, A. S., Connett, J., Jacobs, D. R., & Rauramma, R. (1987). Leisure-time physical activity levels and risk of coronary heart disease and death: The multiple risk factor intervention trial. Journal of the American Medical Association, 258, 2388–2395.PubMedCrossRefGoogle Scholar
- Lund-Johansen, P. (1980). Hemodynamics in essential hypertension. Clinical Science, 59, 343s–354s.PubMedGoogle Scholar
- McCubbin, J. A. (1991). Diminished opioid inhibition of blood pressure and pituitary function in hypertension development. In J. A. McCubbin, P. G. Kaufman, & C. B. Nemeroff (Eds.), Stress, neuropeptides and systemic disease (pp. 445–466). Orlando: Academic.CrossRefGoogle Scholar
- McCubbin, J. A., Richardson, J., Langer, A. W., Kizer, J. S., & Obrist, P. A. (1983). Sympathetic neuronal function and left ventricular performance during behavioral stress in humans: The relationship between plasma catecholamines and systolic time intervals. Psychophysiology, 20, 102–110.PubMedCrossRefGoogle Scholar
- McCubbin, J. A., Surwit, R. S., & Williams, R. B. (1985). Endogenous opiates, stress reactivity, and risk for hypertension. Hypertension, 7, 808–811.PubMedCrossRefGoogle Scholar
- McCubbin, J. A., Surwit, R. S., & Williams, R. B. (1988). Opioid dysfunction and risk for hypertension: Naloxone and blood pressure responses during different types of stress. Psychosomatic Medicine, 50, 8–14.PubMedGoogle Scholar
- McCubbin, J. A., Surwit, R. S., Williams, R. B., Nemeroff, C. B., & McNeilly, M. (1989). Altered pituitary hormone response to naloxone in hypertension development. Hypertension, 14, 636–644.PubMedCrossRefGoogle Scholar
- McCubbin, J. A., Cheung, R., Montgomery, T. B., Bulbulian, R., & Wilson, J. F. (1992). Aerobic conditioning stimulates opioid inhibition of cardiovascular responses during stress. Psychophysiology, 29.Google Scholar
- Manuck, S. B., Kasprowicz, A. L., & Muldoon, M. F. (1990). Behaviorally evoked cardiovascular reactivity and hypertension: Conceptual issues and potential associations. Annals of Behavioral Medicine, 12, 17–29.CrossRefGoogle Scholar
- Mastrianni, J. A., Palkovits, M., & Kunos, G. (1989). Activation of brainstem endorphinergic neurons causes cardiovascular depression and facilitates baroreflex bradycardia. Neuroscience, 33, 559–566.PubMedCrossRefGoogle Scholar
- Murphy, B. E. P. (1967). Some studies of the protein binding of steroids and their application to the routine micro and vitramicro measurement of various steroids in body fluids by competitive protein binding radioimmunoassay. Journal of Clinical Endocrinology and Metabolism, 27, 973–990.PubMedCrossRefGoogle Scholar
- Nestel, P. J. (1969). Blood pressure and catecholamine excretion after mental stress in labile hypertension. Lancet, 5, 692–694.CrossRefGoogle Scholar
- Obrist, P. A. (1976). The cardiovascular-behavioral interaction—As it appears today. Psychophysiology, 13, 95–107.PubMedCrossRefGoogle Scholar
- Oleshansky, M. A., Zoltick, J. M., Herman, R. H., Mougey, E. H., & Meyerhoff, J. L. (1990). The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. European Journal of Applied Physiology, 59, 405–410.CrossRefGoogle Scholar
- Paffenbarger, R. S., Thorne, M. C., & Wing, A. L. (1968). Chronic disease in former college students. VIII. Characteristics in youth predisposing to hypertension in later years. American Journal of Epidemiology, 88, 25–32.PubMedGoogle Scholar
- Paffenbarger, R. S., Hyde, R. T., Irving, A. S., & Steinmetz, C. H. (1984). A natural history of athleticism and cardiovascular health. Journal of the American Medical Association, 252, 491–495.PubMedCrossRefGoogle Scholar
- Pickering, T. G., & Gerin, W. (1990). Cardiovascular reactivity in the laboratory and the role of behavioral factors in hypertension: A critical review. Annals of Behavioral Medicine, 12, 3–16.CrossRefGoogle Scholar
- Rabkin, S. W., Mathewson, F. A., & Tate, R. B. (1982). Relationship of blood pressure in 20–39-year old men to subsequent blood pressure and incidence of hypertension over a 30-year observation period. Circulation, 65, 291–300.PubMedCrossRefGoogle Scholar
- Saltin, B. (1990). Cardiovascular and pulmonary adaptation to physical activity. In C. Bouchard, R. J. Shepard, T. Stephens, J. R. Sutton, & B. D. McPherson (Eds.), Exercise, fitness, and health (pp. 187–204). Champaign: Human Kinetics.Google Scholar
- Schaz, K., Stock, G., Simon, W., Scnior, K., Unger, T., Rockhold, R., & Ganten, D. (1980). Enkephalin effects on blood pressure, heart rate, and baroreflex. Hypertension, 2, 395–407.PubMedCrossRefGoogle Scholar
- Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for integration of neuroendocrine and autonomic mechanisms. Neumendocrinology, 31, 410–417.CrossRefGoogle Scholar
- Turner, J. R., Hewitt, J. K., Morgan, R. K., Sims, J., Carroll, D., & Kelly, K. A. (1986). Graded mental arithmetic as an active psychological challenge. International Journal of Psychophysiology, 3, 307–309.PubMedCrossRefGoogle Scholar
- Vardnell, I. M., Tapia, F. J., De May, J., Rush, R. A., Bloom, S. R., & Polak, J. M. (1982). Electron immunocytochemical localization of enkephalin-like material in catecholamine-containing cells of the carotid body, the adrenal medulla, and in pheochromocytomas of man and other mammals. Journal of Histochemistry and Cytochemistry, 30, 682–690.CrossRefGoogle Scholar
- Wardlaw, S. L., & Franz, A. G. (1979). Measurement of beta-endorphin in human plasma. Journal of Clinical Endocrinology and Metabolism, 48, 176–180.PubMedCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1992