Mathematical Modeling of Wave Propagation in Anisotropic Media (Mathematical Solution)

  • Fares A. Chedid Helou
  • John H. Hemann

Abstract

Mathematical modeling of the interaction of ultrasonic waves with anisotropic media (21 constants) is carried out. An anisotropic plate immersed in a liquid medium is acted upon by an ultrasonic incident wave of arbitrary frequency and angle of incidence. The incident acoustic harmonic plane wave originates in the upper half-space fluid. Expressions for reflection and transmission coefficients are derived and presented graphically as a function of the angle of incidence and the product of the frequency and the thickness of the plate. Also, the phase of both coefficients versus frequency are presented. All field variables can be fully specified using this mathematical modeling. This study is very general and can be easily specified to special cases of wave propagation and geometric and material configurations. It can be applied to both Rayleigh and Lamb waves. The numerical computations were done through the use of the VAXIMA/MACSYMA software package.

Keywords

Transmission Coefficient Anisotropic Medium Lamb Wave Orthotropic Plate Fibrous Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Sarrafzadeh, R. J. Churchill, and M. G. Niimura, Laser Generated Ultra-sound; “Proceedings of a Workshop on Acousto-Ultrasonics: Theory and Application,” Blacksburg, Virginia, J. C. Duke, Jr. ed. Plenum Press, New York, pp 201–207 (1988).CrossRefGoogle Scholar
  2. [2]
    P. J. Latimer and H. L. Whaley, Electromagnetic Transducers for Generation of Ultrasonic Waves: “Proceedings of a Workshop on Acousto-Ultrasonics: Theory and Application,” Blacksburg, Virginia, J. C. Duke, Jr. ed. Plenum Press, New York, pp 209–220 (1988).CrossRefGoogle Scholar
  3. [3]
    D. E. Chimenti, and A. H. Nayfeh, Leaky Lamb Waves in Fibrous Composite Laminates, J. of Appl. Phys. Vol. 58, p 4531 (1985).CrossRefGoogle Scholar
  4. [4]
    S. K. Datta, H. M. Ledbetter, and R. D. Kriz, Calculated elastic Constants of Composites Containing Anisotropic Fibers, Int. J. Solids Structures Vol. 20, No. 5, pp 429–438, (1984).CrossRefGoogle Scholar
  5. [5]
    A. H. Nayfeh, and G. A. Gurtman, A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides, J. of Appl. Mech. pp 106-110 March (1974).Google Scholar
  6. [6]
    A. K. Mal, Wave Propagation in Layered Composite Laminates — Periodic Surface Loads, Wave Motion 10 Elsevier Science Publishers B. V. (North-Holland) pp 257–266 (1988).Google Scholar
  7. [7]
  8. [8]
    H. Lamb, On Waves in an Elastic Plate, Proc. of the Royal soc. of london, Series A, Vol. 93, p 114 (1916-1917).CrossRefGoogle Scholar
  9. [9]
    Lord Raleigh, On the Free Vibrations of an Infinite Plate of Homogeneous Isotropic Elastic Matter, Proc. of the London Math Soc. Vol. 20, pp 225-234.Google Scholar
  10. [10]
    R. D. Mindlin, Waves and Vibrations in Isotropie, Elastic Plates, in: “Structural Mechanics,” J. N. Goodier, and N. J. Hoof, eds. Pergamon Press, New York (1960).Google Scholar
  11. [11]
    L. E. Pitts, A Unified Theoretical Description of Ultrasonic Beam Reflection From a Solid Plate in a Liquid, Ph. D. thesis (Georgetown University, 1975). (unpublished).Google Scholar
  12. [12]
    H. L. Bertoni, and T. Tamir, Unified Theory of Raleigh-Angle Phenomena for Acoustic Beams at Liquid-Solid Interfaces, Appl. Phys. Vol. 2, pp 157–172, Springer-Verlag (1973).CrossRefGoogle Scholar
  13. [13]
    L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, 1980.Google Scholar
  14. [14]
  15. [15]
    S. I. Rokhlin, T. K. Bolland, and L. Adler, Reflection and Refraction of Elastic Waves on a Plane Interface Between Two Generally Anisotropic Media, J. of the Acoust. Soc. of America, Vol. 79, pp 906–918, (1986).CrossRefGoogle Scholar
  16. [16]
    A. H. Nayfeh, and D. E. Chimenti, Ultrasonic Wave Reflection from Liquid-Coupled Orthotropic Plates With Applications to Fibrous Composites, J. of Appl. Mech., Vol. 55, pp 863–870. (1988).CrossRefGoogle Scholar
  17. [17]
    A. H. Nayfeh, T. W. Taylor, and D. E. Chimenti, Theoretical Wave Propagation in Multilayered Orthotropic Media, in: “ Wave Propagation In Structural Composites,” A. K. Mal and T. C. Ting, eds., pp 17-27, ASME (1988).Google Scholar
  18. [18]
    D. E. Chimenti, and A. H. Nayfeh, Ultrasonic Reflection and Guided Wave Propagation in Fibrous Composite Laminates, in: “ Wave Propagation In Structural Composites,” A. K. Mal and T. C. Ting, eds., pp 29-37, ASME (1988).Google Scholar
  19. [19]
    R. Courant, and D. Hilbert, Methods of Mathematical Physics, Volume Two, John Wiley and Sons, (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Fares A. Chedid Helou
    • 1
  • John H. Hemann
    • 2
  1. 1.Department of Mathematical SciencesKent State UniversityAshtabulaUSA
  2. 2.Civil Engineering DepartmentCleveland State UniversityClevelandUSA

Personalised recommendations