Molecular Dynamics Simulation of the Aqueous Solvation of Sugars

  • J. W. Brady
  • S. N. Ha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)

Abstract

Recently, several molecular dynamics simulations of the aqueous solvation of carbohydrates have been reported. These studies represent the first theoretical picture available of the microscopic character of sugar solutions, and may provide explanations of the unusual and complex behavior of this class of molecules in solution. This paper will discuss two MD simulations of D-glucopyranose, including a free energy perturbation calculation of the anomeric free energy difference. Solvation was found to have little effect upon the mean conformational structure of the pyranoid rings, but the presence of solvent significantly affected the motions and orientations of the exocyclic groups. Adjacent functional groups of the sugar rings were found to mutually perturb one another’s hydration, depending upon the local stereochemistry, which may prove to play a part in the observed anomeric preferences of the sugars. From a component analysis of the free energy of solvation of the two anomers of D-glucopyranose, it was found that a large solvation term favors the beta anomer, which is the form found to be preferred in aqueous solution.

Keywords

Molecular Dynamic Simulation Potential Energy Function Pair Distribution Function Hydroxymethyl Group Aqueous Solvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.H. Stillinger, Water revisited, Science 209:451 (1980).CrossRefGoogle Scholar
  2. 2.
    F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge University Press, Cambridge (1985).Google Scholar
  3. 3.
    D. Eisenberg and W. Kauzmann, “The Structure and Properties of Water,” Oxford University Press, New York (1969).Google Scholar
  4. 4.
    C.L. Brooks, M. Karplus, and B.M. Pettitt, “Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics,” Advances in Chemical Physics, Vol. LXXI, Wiley-Interscience, New York (1988).Google Scholar
  5. 5.
    J.A. McCammon and S.C. Harvey, “Dynamics of Proteins and Nucleic Acids,” Cambridge University Press, Cambridge (1987).CrossRefGoogle Scholar
  6. 6.
    U. Burkert and N.L. Allinger, “Molecular Mechanics,” ACS Monograph 177, American Chemical Society, Washington, DC (1982).Google Scholar
  7. 7.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem, Phvs. 21:1087 (1953).CrossRefGoogle Scholar
  8. 8.
    A. Rahman, Correlations in the motions of atoms in liquid argon, Phys. Rev. 136:A405 (1964).CrossRefGoogle Scholar
  9. 9.
    F.H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60:1545 (1974).CrossRefGoogle Scholar
  10. 10.
    V.G. Dashevsky and G.N. Sarkisov, The solvation and hydrophobic interaction of non-polar molecules in water in the approximation of interatomic potentials: the Monte Carlo method, Mol. Phys. 27:1272 (1974).CrossRefGoogle Scholar
  11. 11.
    J.C. Owicki and H.A. Scheraga, Monte Carlo calculations in the isothermal-isobaric ensemble. 2. Dilute aqueous solution of methane, J. Am. Chem. Soc. 99:7413 (1977).CrossRefGoogle Scholar
  12. 12.
    S. Swaminathan, S.W. Harrison, and D.L. Beveridge, Monte Carlo studies on the structure of a dilute aqueous solution of methane, J. Am. Chem. Soc. 100:5705 (1978).CrossRefGoogle Scholar
  13. 13.
    G. Palinkas, W.O. Riede, and K.Z. Heinzinger, A molecular dynamics study of aqueous solutions. VII. Improved simulations and comparison with x-ray investigations of a NaCl solution, Naturforsch. 32a:1137 (1977).Google Scholar
  14. 14.
    L.X. Dang and B.M. Pettitt, Solvated chloride ions at contact, J. Chem. Phys. 86:6560 (1987).CrossRefGoogle Scholar
  15. 15.
    S. Okazaki, H. Touhara, and K. Nakanishi, Computer experiments of aqueous solutions. V. Monte Carlo calculation on the hydrophobic interaction in 5 Mol% methanol solution, J. Chem Phys. 81:890 (1984).CrossRefGoogle Scholar
  16. 16.
    R.A. Kuharski and P.J. Rossky, Solvation of hydrophobic species in aqueous urea solution: a molecular dynamics study, J. Am. Chem. Soc. 106:5794 (1984).CrossRefGoogle Scholar
  17. 17.
    P.J. Rossky and M. Karplus, Solvation. A molecular dynamics study of a dipeptide in water, J. Am. Chem. Soc. 101:1913 (1979).CrossRefGoogle Scholar
  18. 18.
    P. Ahlstrom, O. Teleman, and J. Jonsson, Molecular dynamics simulation of interfacial water structure and dynamics in a parvalbumin solution, J. Am. Chem. Soc. 110:4198 (1988).CrossRefGoogle Scholar
  19. 19.
    A. Suggett, Polysaccharides, in: “Water: A Comprehensive Treatise,” Vol. 4, F. Franks, ed., Plenum, New York (1975).Google Scholar
  20. 20.
    F. Franks, Physical chemistry of small carbohydrates — equilibrium solution properties. Pure Appl. Chem. 59:1189 (1987).CrossRefGoogle Scholar
  21. 21.
    J.R. Grigera, Conformation of polyols in water, J. Chem. Soc. Faraday Trans. I 84:2603 (1988).CrossRefGoogle Scholar
  22. 22.
    J.W. Brady, Molecular dynamics simulations of α-D-glucose in aqueous solution, J. Am. Chem. Soc. 111:5155 (1989).CrossRefGoogle Scholar
  23. 23.
    S. Ha, J. Gao, B. Tidor, J.W. Brady, and M. Karplus, Solvent effect on the anomeric equilibrium in D-glucose: a free energy simulation analysis, submitted to J. Am. Chem. Soc..Google Scholar
  24. 24.
    A.H. Narten, M.D. Dunford, and H.A. Levy, X-ray diffraction study of liquid water in the temperature range 4–200°C, Discuss. Faraday Soc. 43:97 (1967).CrossRefGoogle Scholar
  25. 25.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, and J. Hermans, Interaction models for water in relation to protein hydration, in: “Intermolecular Forces,” B. Pullman, ed., Reidel, Dordrecht (1981).Google Scholar
  26. 26.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olaf son, D.J. States, S. Swaminathan, and M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 4:187 (1983).CrossRefGoogle Scholar
  27. 27.
    S.N. Ha, A. Giammona, M. Field, and J.W. Brady, A revised potentialenergy surface for molecular mechanics studies of carbohydrates, Carbohydr. Res. 180:207 (1988).CrossRefGoogle Scholar
  28. 28.
    W.L. Jorgenson, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79:926 (1983).CrossRefGoogle Scholar
  29. 29.
    C.L. Brooks, A. Brunger, and M. Karplus, Active site dynamics in protein molecules: a stochastic boundary molecular dynamics approach, Biopolvmers 24:843 (1985).CrossRefGoogle Scholar
  30. 30.
    D. Cremer and J.A. Pople, A general definition of ring puckering coordinates, J. Am. Chem. Soc. 97:1354 (1975).CrossRefGoogle Scholar
  31. 31.
    S.N. Ha, L.J. Madsen, and J.W. Brady, Conformational analysis and molecular dynamics simulations of maltose, Biopolymers 27:1927 (1988).CrossRefGoogle Scholar
  32. 32.
    R.H. Marchessault and S. Perez, Conformations of the hydroxymethyl groups in crystalline aldohexopyranoses, Biopolymers 18:2369 (1979).CrossRefGoogle Scholar
  33. 33.
    G.M. Brown and H.A. Levy, α-D-Glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis, Science 147: 1038 (1965); α-D-Glucose: further refinement based on neutron-diffraction data, Acta Crys. B35:656 (1979).CrossRefGoogle Scholar
  34. 34.
    S.J. Perkins, L.N. Johnson, D.C. Phillips, and R.A. Dwek, High-resolution 1H and 13C-NMR spectra of D-glucopyranose, 2-acetamido-2-deoxy-D-glucopyranose, and related compounds in aqueous media, Carbohydr. Res. 59:19 (1977).CrossRefGoogle Scholar
  35. 35.
    R.S. Shallenberger, “Advanced Sugar Chemistry,” AVI, Westport, CT (1982).Google Scholar
  36. 36.
    J.P.M. Postma, H.J.C. Berendsen, and J.R. Haak, Thermodynamics of cavity formation in water, Faraday Symp. 17:55 (1982).CrossRefGoogle Scholar
  37. 37.
    B.L. Tembe and J.A. McCammon, Ligand-receptor interactions, Comput. Chem. 8:281 (1984).CrossRefGoogle Scholar
  38. 38.
    W.L. Jorgenson and C. Ravimohan, Monte Carlo simulation of differences in free energies of hydration, J. Chem. Phvs. 83:3050 (1985).CrossRefGoogle Scholar
  39. 39.
    J. Gao, K. Kuczera, B. Tidor, and M. Karplus, Hidden thermodynamics of mutant proteins: a molecular dynamics analysis, Science 244:1069 (1989).CrossRefGoogle Scholar
  40. 40.
    I. Tvaroška and T. Kozár, Theoretical studies on the conformation of saccharides. VII. Structure and stereochemistry of α-and β-D-glucopyranose in solution, Theor. Chim. Acta 70:99 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. W. Brady
    • 1
  • S. N. Ha
    • 1
  1. 1.Department of Food ScienceCornell UniversityIthacaUSA

Personalised recommendations