Biological Effects of Coherent and Noncoherent IR Radiation

  • Louis A. Court
  • Daniel Courant
Part of the NATO ASI Series book series (NSSB, volume 242)

Abstract

The knowledge of immediate and long-term biological, physiological effects of IR non coherent and coherent (laser and laser devices) light is only the way to establish permissible exposure levels and to define a good approach of medical lasers useful. The research of various biological, physiological functional behavioral criteria, which accurately reflect the changes with IR non coherent and coherent light provide generally valuable information on current, proposed safety standards.

Keywords

Pulse Repetition Frequency Outer Nuclear Layer Retinal Damage Ocular Medium Ocular Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geeraets W.J. and Berry E.R. Ocular spectral characteristics as related to hazards from lasers and other light sources Am. J. Ophthal. 66:15–20 (1968).Google Scholar
  2. 2.
    Ham W.T. Mueller H.A., Ruffulo J.J. Jr, Cleary S.F., Guerry R.K. and Dupont Guerry Biological Applications and effects of optical lasers. Annual/final report contract N° DAMP 17-82-C-2083. U.S Army Medical research and development command fort Detrick, Frederick, MD 21701-5012 (1987).Google Scholar
  3. 3.
    Ham W.T. Jr., Mueller H.A., Ruffolo J.J. Jr and A.M. Clarke Sensitivity of the retina to radiation damage as a function of wavelength, Photochemistry and photobiology, 29:735–743 (1979).CrossRefGoogle Scholar
  4. 4.
    Gibbons W. D., and Allen R. G. Retinal damage from long-term exposure to laser radiation Invest. Ophthal. Visual Sci., 16, 6:521–529 (1977).Google Scholar
  5. 5.
    Allen R.G. Jr., Bruce W.B., Kay K.R., Morrison L.K., Neish R.A., Polaski C.A., and Richards R.A. Research on ocular effects produced by thermal radiation report AD 659 146 USAF School of Aerospace Medicine (1967).Google Scholar
  6. 6.
    Goldman A.I., Ham W.T., and Mueller H.A. Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey, Exp. eye Res. 24:45–56 (1977).CrossRefGoogle Scholar
  7. 7.
    Allen R.G., Thomas S.J., Harrison R.F., Zuclich J.A., and Blankenstein M.F. Ocular effects of pulsed Nd laser radiation: variation of threshold with pulsewidth, Health Physics 49, 5:685–692 (1985).CrossRefGoogle Scholar
  8. 8.
    Gibson G.L.M Retinal damage from repeated subthreshold exposures using a ruby laser photo coagulator, SAM-TR-70-59 (1970).Google Scholar
  9. 9.
    Skeen C.H Ocular effects of repetitive laser pulses Contract F 41609-71-C-0018, Technology, Inc, San Antonio, Tx, (1972).Google Scholar
  10. 10.
    Skeen C.H. Ocular effects of near IR laser radiation for safety criteria Contract F 41609-71-C-0016, Technology, Inc, San Antonio, Tx, (1972).Google Scholar
  11. 11.
    Ebbers R.W. Retinal effects of multiple pulse gallium arsenide laser Report SAM.TR.72.25, Usaf School of Aerospace Medicine (1972).Google Scholar
  12. 12a.
    Lund D.J., Beatrice E.S. and Sliney D.H. Near infrared laser ocular bioeffects in Proceedings of First International Symposium on laser biological effects and exposure limits 19, 246-255, L. Court et. A1 Eds, 1986.Google Scholar
  13. 12b.
    Lund D.J., Beatrice E.S., and Schuschereba S.T. Bioeffects concerning the safe use of GaAs laser training devices in combat ocular problems. Proceedings of Conference 20-21/10/1980, Division of Ocular Hazard Letterman Army Institute of Research, supp. 15-29 (1982). 13. Beatrice E.S., Lund J.D., and Talsma D.M. Retinal alterations produced by low level gallium arsenide laser exposure.Google Scholar
  14. Letterman Army Institute of Research Report N° 38 (1976) LAIR Presidio of San Francisco Ca 94129.Google Scholar
  15. 14.
    Stuck B.E., Lund D.J., and Beatrice E.S. Ocular effects of relatively “eye safe” lasers Combat ocular problems supp 1-14 (1982) LAIR, San Francisco.Google Scholar
  16. 15.
    Reed R.D. A predictive equation for infrared laser damage to the corneal epithelium, Health Physics 36:73–75 (1979).Google Scholar
  17. 16.
    Wray J.L. Model for prediction of retinal burns Headquarters DASA, Washington DC, Tech. Rep. DASA 1282 (1962).Google Scholar
  18. 17.
    Vos J. J. A theory of retinal burns, Bull. Math. Biophys. 24:115–128 (1962).CrossRefGoogle Scholar
  19. 18.
    Clarke A.M., Geeraets W.J., and Ham W.T. Jr. An equilibrium model for retinal injury from optical sources, Appl. Opt. 8, 5:1051–1054 (1969).ADSCrossRefGoogle Scholar
  20. 19.
    Mainster M.A., White T.J., Tips J.H., and Wilson P.W. Spectral dependance of retinal damage produced by intense light sources, J. Opt. Soc. Amer 60, 6: 848–855 (1970).ADSCrossRefGoogle Scholar
  21. 20.
    Takata A.N. et al., General model of laser induced eye damage II TRI, Techn. Rep. 74-6324 (1974).Google Scholar
  22. 21.
    Egbert D.E., and Maher E.F. Corneal damage thresholds for IR laser exposure: empirical data, model predictions and safety standards. USAF School of Aerospace Medicine Brooks AFB, SAM-TR-77-29 (1977).Google Scholar
  23. 22.
    Wolbarsht M.L. Damage to the lens from IR in: Ocular effect of non-ionizine radiation, 121-141 (1980).Google Scholar
  24. 23.
    Goldmann H. Genesis of heat cataract, Arch. Ophtal. 9: 314–316 (1933).Google Scholar
  25. 24.
    Langley R.K., Mortimer C.B., and McCullogh C. The experimental production of cataracts by exposure to heat and light, Arch. Ophthal. 63/473–488 (1960).CrossRefGoogle Scholar
  26. 25.
    Vogt A. Das experimentelle reine ultrarot Strahlen katarakt des Kaninchen 17 Monaten nach der Bestrahlung der Experimentelle f. des Albinos Klin. Monats BL Augenh. 89: 255–256 (1932).Google Scholar
  27. 26.
    Wolbarsht M.L. The effects of optical radiation on the anterior structure of the eye In Current Concepts in Ergophthalmology, pp.24–26, ed by B. Tengroth, P. Epstein, A. Anseth, A. Hedin, A. Keeny, M. Ropper-Hail and D. Sliney Societies Ergophtalmologica Internationale, Stockholm (1978).Google Scholar
  28. 27.
    Laufer G., Joachims H.Z., Eliachar I., and Mordechovitz D. Measurement of laser exposure levels for burn threshold in biological tissue, J. of Biomech. Eng 106: 283–284 (1984).CrossRefGoogle Scholar
  29. 28.
    Mordon S.R., Cornil A.H., Jensen D.M., Gosselin B., and Brunetaud J.M Nd: Yag laser coagulation comparative study of continuous and high power pulsed lasers in vivo in: First International Symposium on Laser Biological Effects and Exposure Limits. L.A. Court et al Ed. 84-101 (1988).Google Scholar
  30. 29.
    Court L., Courant D., Doloy M. T. et Dormont D. Effets cytogénétiques d’un laser ND:YAG pulse In Rapport annuel DRET N 86/1027 78-91 (1988) CRSSA — Grenoble.Google Scholar
  31. 30.
    Rounds D.E., Chamberlain E.C., and Okigaki T. Laser radiation on tissue cultures, Ann. N.Y. Acad. Sci, 122:713–727 (1964).ADSCrossRefGoogle Scholar
  32. 31.
    Nakajima M., Fukuda M., Kavoki T., and Atsumi K. Cytogenetic effect of argon laser irradiation on Chinese hamster cells, Rad. Res. 93 598–600 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Louis A. Court
    • 1
  • Daniel Courant
    • 1
  1. 1.Centre de Recherches du Service de Sante des ArmeesCommissariat a l’ Energie AtomiqueGrenoble and Fontenay aux RosesFrance

Personalised recommendations