The Neocortex pp 159-171 | Cite as

Emergence of Radial and Modular Units in Neocortex

  • Mathew E. Diamond
  • Ford F. Ebner
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

Our strategy here is to compare the cortical organization of phylogenetically distant species. We can view the shared features as themes conserved during the course of evolution and the features of cortical organization that differ among species as variations on a common theme. We will compare the most primitive dorsal cortex found among living vertebrates, the visual cortex of turtles, with the somatic sensory field of mammalian neocortex. The comparison is based on classical cell morphology combined with modern intracellular and extracellular electrophysiol-ogy, tract tracing, and receptive field mapping.

Keywords

Receptive Field Apical Dendrite Modular Unit Dorsal Cortex Receptive Field Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong-James, M., and Callahan, C.A. (1990) Spatiotemporal convergence in the thalamic venteroposterior medial nucleus (VPm) of the rat. J. Comp. Neurol., in press.Google Scholar
  2. Armstrong-James, M., Callahan, C.A., and Friedman, M. (1990a) The role of intracortical mechanisms in the construction of centre and surround receptive fields of layer IV neurons in the rat barrel field cortex. J. Comp. Neurol., in press.Google Scholar
  3. Armstrong-James, M., Das-Gupta, A., and Fox, K. (1990b) Laminar latency analysis of center and surround receptive fields in the rat SI barrel field cortex. J. Comp. Neurol., in press.Google Scholar
  4. Armstrong-James, M., and Fox, K. (1987) Spatiotemporal convergence and divergence in the rat SI “barrel” cortex. J. Comp. Neurol., 263: 265–281.PubMedCrossRefGoogle Scholar
  5. Cajal, S. Ramon y (1899) Estudios sobre la corteza cerebral humana I: Corteza visual. Rev. trim. Microcraf., Madrid., 4: 1–63.Google Scholar
  6. Cajal, S. Ramon y (1900) Estudios sobre la corteza cerebral humana IE: Corteza acustica. Rev. trim. Microcraf., Madrid., 5: 185–198.Google Scholar
  7. Chagnac-Amitai, Y., and Connors, B. W. (1989) Horizontal spread of synchronized activity in neocortex, and its control by GABAA-mediated inhibition. J. Neurophysiol., 61: 747–758.PubMedGoogle Scholar
  8. Collonier, M. (1968) Synaptic patterns on different cell types in the laminae of the cat visual cortex: An electron microscope study. Brain Res., 9: 268–287.CrossRefGoogle Scholar
  9. Connors, B.W., Gutnick, M.J., and Prince, D.A. (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol., 48: 1302–1320.PubMedGoogle Scholar
  10. Diamond, ME. (1989) Organization of somatic sensory cortex: The detection of discrete topographic units and evidence for their integrative function. Ph. D. Dissertation, University of North Carolina.Google Scholar
  11. Diamond, M., Favorov, O., and Whitsel, B. (1987) The body surface is represented in SI by a mosaic of segregates. Soc. Neurosci. Abst., 13:471.Google Scholar
  12. Ebner, F.F., and Cotonnier, M. (1978) Quantitative studies of synapses in turtle visual cortex. J. Comp. Neurol., 179: 263–276.PubMedCrossRefGoogle Scholar
  13. Favorov, O.V., and Diamond, M.E. (1990) Demonstration of discrete place defined columns-segregates-in cat SI. J. Comp. Neurol., in press.Google Scholar
  14. Favorov, O.V., Diamond, M.E., and Whitsel, B.L. (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatosensory cortex of cat. Proc. Natl. Acad. Sci. USA, 84: 6606–6610.PubMedCrossRefGoogle Scholar
  15. Favorov, O., and Whitsel, B.L. (1988) Spatial organization of the peripheral input to area 1 cell columns. I. The detection of “segregates.” Brain Res. Rev., 13: 25–42.CrossRefGoogle Scholar
  16. Friedman, D.P., and Jones, E.G. (1980) Focal projection of electrophysiologically defined groupings of thalamic cells on the monkey somatic sensory cortex. Brain Res., 191: 249–252.PubMedCrossRefGoogle Scholar
  17. Garraghty, P.E., Pons, T.P., Sur, M., and Kaas, J.H. (1989) The arbors of axons terminating in middle cortical layers of somatosensory area 3b in owl monkeys. Somatosens. Mot. Res., 6: 401–411.PubMedCrossRefGoogle Scholar
  18. Gilbert, C.D., and Wiesel, T.N. (1981) Laminar specialization and intracortical connections in cat primary visual cortex, in: The organization of the cerebral cortex (Schmitt, F.O., Worden, F.G., Adelman, G., and Dennis, S.G., eds.) The MIT Press, Cambridge, MA, pp. 163–191.Google Scholar
  19. Hall, J.A., Foster, R.E., Ebner, F.F., and Hall, W.C. (1977) Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta). Brain Res., 130: 196–216.CrossRefGoogle Scholar
  20. Hendry, S.H.C., Schwark, H.D., Jones, E.G., and Yan, J. (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci., 7: 1503–1519.PubMedGoogle Scholar
  21. Jensen, K.F., and Killackey, H.P. (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The neuronal morphology of specific thalamo-cortical afferents. J. Neurosci., 7: 3529–3543.PubMedGoogle Scholar
  22. Johnston, J.B. (1915) The cell masses in the forebrain of the turtle Cistudo Carolina. J. Comp. Neurol., 25: 393–468.CrossRefGoogle Scholar
  23. Jones, E.G. (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J. Comp. Neurol., 160: 206–267.Google Scholar
  24. Jones, E.G., Friedman, D.P., and Hendry, S.H.C. (1982) Thalamic basis of place-and modality-specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J. Neurophysiol., 48: 545–568.PubMedGoogle Scholar
  25. Jones, E.G., and Powell, T.P.S. (1969) Synapses on the axon hillocks and initial segments of pyramidal cells in the cerebral cortex. J. Cell Sci., 5: 495–507.PubMedGoogle Scholar
  26. Keller, A., and White, E.L (1987) Synaptic organization of GABAergic neurons in the mouse SmI cortex. J. Comp. Neurol., 262: 1–12.PubMedCrossRefGoogle Scholar
  27. Killackey, H.P. (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res., 51: 326–331.PubMedCrossRefGoogle Scholar
  28. Kosar, E., and Hand, P.J. (1981) First somatosensory cortical columns and associated neuronal clusters of nucleus ventralis posterolateralis of the cat: An anatomical demonstration. J. Comp. Neurol., 198: 515–539.PubMedCrossRefGoogle Scholar
  29. Kriegstein, A.R., and Connors, B.W. (1986) Cellular physiology of the turtle visual cortex: Synaptic properties and intrinsic circuitry. J. Neurosci., 6: 178–191.PubMedGoogle Scholar
  30. Landry, P., and Deschenes, M. (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J. Comp. Neurol., 199: 345–371.PubMedCrossRefGoogle Scholar
  31. Lin, C.-S., Lu, S.M., and Yamawaki, R.M. (1987) Laminar and synaptic organization of terminals from the ventrobasal and posterior thalamic nuclei in barrel cortex. Soc. Neurosci. Abst., 17: 248.Google Scholar
  32. Lorente de No (1949) Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System. (Fulton, J.F., ed.) MIT Press, Cambridge, MA, pp. 288–313.Google Scholar
  33. Lund, J.S. (1984) Spiny stellate neurons in: Cerebral Cortex, Volume 1, Cellular components of the cerebral cortex. (Peters, A., and Jones, E.G., eds.) Plenum Press, New York, NY, pp. 255–308.Google Scholar
  34. Mazurskaya, P.Z. (1972) Organization of receptive fields in the forebrain of Emys orbicularis. Zh. Evol. Biokhim. Fiziol., 8: 617–624. (Translated in Neurosci. Behav. Physiol. [1973] 6: 311-318).Google Scholar
  35. Orrego, F., and Lisenby, D. (1962) The reptilian forebrain. IV. Electrical activity in the turtle cortex. Arch. Ital. Biol., 99: 425–445.Google Scholar
  36. Peters, A., and Walsh, M. (1972) Study of the organization of apical dendrites in the somatic sensory cortex of the rat. J. Comp. Neurol., 144: 253–268.PubMedCrossRefGoogle Scholar
  37. Ribak, CE. (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J. Neurocytol., 2: 361–368.Google Scholar
  38. Simons, D.J. (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophys., 41: 798–820.Google Scholar
  39. Smith, L.M., Ebner, F.F., and Colonnier, M. (1980) The thalamocortical projection in Pseudemys turtles: A quantitative electron microscopic study. J. Comp. Neurol., 190: 445–461.PubMedCrossRefGoogle Scholar
  40. Somogyi, P., Freund, T.F., Halasz, N., and Freund, T.F. (1981) Selectivity of neuronal [3H]-GABA accumulation in the visual cortex as revealed by Golgi staining of the labelled neurons. Brain Res., 225: 431–436.PubMedCrossRefGoogle Scholar
  41. Vincent, S.B. (1912) The function of the vibrissae in the behavior of the adult white rat. Behavior Monographs, 1: 1–85.Google Scholar
  42. Welker, C. (1971) Microelectrode delineation of fine grain somatopic organization of SmI cerebral neocortex in rat. Brain Res., 26: 259–275.PubMedGoogle Scholar
  43. White, E.L. (1978) Identified neurons in mouse SmI cortex which are postsynaptic to thalamo-cortical axon terminals: A combined Golgi-electron microscopic and degeneration study. J. Comp. Neuroi, 181: 627–662.CrossRefGoogle Scholar
  44. White, E.L. (1979) Thalamocortical synaptic relations: A review with emphasis on the projection of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res. Rev., 1: 275–311.CrossRefGoogle Scholar
  45. Winfield, D.A., Brooke, R.N.L., Sloper, J.J., and Powell, T.P.S. (1981) A combined Golgielec-tron microscopic study of synapses made by the proximal axon and recurrent collaterals of a pyramidal neuron in the somatic sensory cortex of the monkey. Neurosci., 6: 1217–1230.CrossRefGoogle Scholar
  46. Winfield, D.A., Gatter, K.C., and Powell, T.P.S. (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain, 103: 245–258.PubMedCrossRefGoogle Scholar
  47. Woolsey, T.A., and Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17: 205–242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Mathew E. Diamond
    • 1
  • Ford F. Ebner
    • 1
  1. 1.Neurobiology Section and Center for Neural ScienceBrown UniversityProvidenceUSA

Personalised recommendations