Radiopharmaceutical Production for PET: Quality Assurance Practice, Experiences and Issues

  • V. W. Pike
  • S. L. Waters
  • M. J. Kensett
  • D. Bateman
  • D. Considine
  • D. R. Turton
  • S. K. Luthra
  • F. Brady
  • A. Shah
  • F. Shah
  • D. J. Silvester

Abstract

Pharmaceutical quality assurance is an overall concept embracing the establishment of certain criteria before production begins, the control of certain factors during production and the evaluation of certain results after production (Bryant, 1989). It is recognised that the provision of radiopharmaceuticals labelled with carbon-11 (t ½ = 20.4 min, β+ = 99.8%), nitrogen-13 (t ½ = 9.96 min, β+ = 100%), oxygen-15 (t ½ = 2.03 min, β+ = 99.9%) or fluorine-18 (t ½ = 109.8 min, β+ = 96.9%) for positron emission tomography (PET) poses special problems of quality assurance (Vera Ruiz et al., 1990). First, the short half-lives of these radionuclides exclude lengthy techniques from routine analysis. Secondly, because many PET radioligands must be produced along with only small amounts of carrier and are often derived from potent drugs, traces of structurally-related contaminants can easily detract from radiopharmaceutical quality. Thirdly, rapid labelling procedures sometimes exploit reagents which themselves are potential sources of toxins. Therefore, our approach to quality assurance, in PET radiopharmaceutical production, depends on using a well-defined protocol that delivers high quality product from materials of assured grade, supported routinely by rapid quality control procedures that measure or test parameters important to efficacy and safety. This combination, in our view, is integral to ensuring ‘good manufacturing practice’ (Sharp, 1983).

Keywords

Positron Emission Tomography Quality Assurance Positron Emission Tomography Study Radiochemical Purity Enantiomeric Purity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam M.J., Grierson J.R., Ruth T.J. and Jivan S. (1986a) Reaction of [18F]acetyl hypofluorite with derivatives of dihydroxyphenylalanine: synthesis of L-[18F]6-fluorodopa. Appl. Radiat. Isot., 37, 877.CrossRefGoogle Scholar
  2. Adam M.J., Ruth T.J., Grierson J.R., Abeysekera B. and Pate B.D. (1986b) Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite. J. Nucl. Med., 27, 1462.PubMedGoogle Scholar
  3. Adam M.J. and Jivan S. (1988) Synthesis and purification of L-6-[18F]fluorodopa. Appl. Radiat. Isot., 39, 1203.CrossRefGoogle Scholar
  4. Alexoff D.L., Casati R., Fowler J., Wolf A.P., Shea C., Schlyer D. and Shiue C.-Y. (1990) Ion chromatographic analysis of 18FDG produced by [18F]fluoride displacement: production of 2-chloro-2-deoxy-D-glucose as an impurity in the presence of chloride ion. Proceedings of the 8th International Symposium on Radiopharmaceutical Chemistry. In Press.Google Scholar
  5. Brady F., Luthra S.K. and Pike V.W. (1989) Nucleophilic substitution at cyclic sulphamates - routes to NCA [18F]fluoro-analogues of MK 801. Appl. Radiat. Isot., 40, 325.CrossRefGoogle Scholar
  6. Brady F., Luthra S.K., Tochon-Danguy H., Landais P.G., Waters S.L., Law M., Jaeggi K.A. and Pike V.W. (1990) Towards a chiral precursor for the automated radiosynthesis of carbon-11 labelled S-CGP 12177. Proceedings of the 8th International Symposium on Radiopharmaceutical Chemistry. In Press.Google Scholar
  7. Bryant R. (1989) The Pharmaceutical Quality Control Handbook (Aster Publishing Corporation, Eugene, Oregon).Google Scholar
  8. Chen J.J., Huang S.-J., Finn R.D., Kirk K.L., Francis B.E., Adams H.R., Cohen R.M. and Chiueh C.C. (1989) A quality control procedure for 6-[18F]fluoro-L-DOPA: A pre-synaptic positron emission tomographic imaging ligand for brain dopamine neurons. J. Nucl. Med., 30, 1249.PubMedGoogle Scholar
  9. Chirakal R. Firnau G., Couse J. and Garnett E.S. (1984) Radiofluorination with 18F-labelled acetyl hypofluorite:[18F]L-6-fluorodopa. Int. J. Appl. Radiat. Isot., 7, 651.Google Scholar
  10. Clark, J.C. and Buckingham, P.D. (1975). Short-lived Radioactive Gases for Clinical Use, Butterworths, London, 1975.Google Scholar
  11. Clark J.C., Crouzel, C., Meyer, G.J. and Strijckmans K. (1987) Current methodology for oxygen-15 production for clinical use, Appl. Radiat. Isot., 38, 597.CrossRefGoogle Scholar
  12. Clark J.C., Dowsett K., Horlock P.L. and Turton D.R. (1990) A readily adaptable process control system for carbon-11 methylations. Acta Radiologica. In Press.Google Scholar
  13. Crouzel C., Lângström B., Pike V.W. and Coenen H.H. (1987). Recommendations for a practical production of [11C]methyl iodide. Appl. Radiat. Isot., 38, 601.CrossRefGoogle Scholar
  14. Ehrin E., Gawell L., Hogberg T., de Paulis T. and Strom P. (1987) Synthesis of [methoxy-3H]- and [methoxy-11C]- labelled raclopride. Specific dopamine-D2 receptor ligands. J. Label. Compd Radiopharm., 24, 931.CrossRefGoogle Scholar
  15. Finn R.D., Marcus C.S. and Johnson F.N. (1988) USP standards for first positron-emitting radiopharmaceutical for PET use - Fluorine F 18 Fluorodeoxy-D-glucose Injection. Pharmacopeial Forum, 14, 4427.Google Scholar
  16. Firnau G., Chirakal R. and Garnett E.S. (1984) Aromatic radiofluorination with [18F]fluorine gas; 6418F]fluoro-L-DOPA. J. Nucl. Med., 25, 1228.PubMedGoogle Scholar
  17. Fowler J.S., Arnett C.D., Wolf A.P., MacGregor R.R., Norton E.F. and Findlay A.M. (1982) [11C]Spiroperidol synthesis, specific activity determination, and biodistribution in mice. J. Nucl. Med., 23, 437.Google Scholar
  18. Gatley S.J., Brown S.G. and Thompson C.M. (1988) Rapid inexpensive quality control of fluorine-18 2-deoxy-2-fluoro-D-glucose preparations using the hexokinase reaction in vitro. J. Nucl. Med., 29, 1443.Google Scholar
  19. Grierson J.R. and Adam M. In-situ preparation of a chemically bonded chiral statioanatry phase for the separsation of aromatic a-amino acid enantiomers. J. Chromatog.,325, 103.Google Scholar
  20. Hamacher K., Coenen H.H. and Stöcklin G. (1986) Efficient stereospecific synthesis of nocarrier-added 2-[18F]fluoro-2-dreoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med., 27, 235.PubMedGoogle Scholar
  21. Ishiwata K., Ido T. and Vaalburg W. (1988) Increased amounts of D-enantiomer dependent on alkaline concentration in the synthesis of L-[methyl-11C]methionine. Appl. Radiat. Isot., 39, 311.CrossRefGoogle Scholar
  22. Jameson R.F. (1968) The oxidation of L43—(3,4-dihydroxyphenyl)alanine (DOPA) by molecular oxygen in the presence of Fe lll as catalyst. In Progress in Coordination Chemistry: Proceedings of the 11th Conference on Coordination Chemistry ed. Cais M., Elsevier, Amsterdam.Google Scholar
  23. Kostrzewa R. and Jacobwitz D. (1973). Acute effects of 6-hydroxydopa on central monoaminergic neurons. Eur. J. Phamacol., 21, 70.CrossRefGoogle Scholar
  24. Lasne M.-C., Pike V.W. and Turton D.R. (1989) The radiosynthesis of [N-methyl- 11 C]sertraline, Appl. Radiat. Isot., 40, 1479.Google Scholar
  25. Luthra S.K., Pike V.W., Brady F., Turton D.R., Wood B., Matthews R.W. and Hawkes G.E. (1986). The utility of 13C/11C-co-labelling and subsequent 13C-NMR in the characterisation of 11C-labelled products. J. Label. Compd Radiopharm., 23, 1070.Google Scholar
  26. Luthra S.K. (1989) PhD Thesis, University of London.Google Scholar
  27. Luthra S.K., Turton D.R., Dowsett K., Bateman D.M., Kensett M.J., Waters S.L. and Pike V.W. (1990) Improved and automated “one-pot” radiosyntheses of [11C]diprenorphine and [11C]buprenorphine. Proceedings of the 8th Symposium on Radiopharmaceutical Chemistry, Princeton, USA, June 1990. In Press.Google Scholar
  28. MacGregor R.R., Schlyer D.J., Fowler J.S., Wolf A.P. and Shiue C.-Y. (1987). Fluorine-18-N-methylspiroperidol; radiolytic decomposition as a consequence of high specific activity and high dose levels. J. Nucl. Med., 28, 60.PubMedGoogle Scholar
  29. Meyer G.-J. (1982) Some aspects of radioanalytical quality control of cyclotron-produced radiopharmaceuticals, Radiochim. Acta, 30, 175.Google Scholar
  30. Oberdorfer F., Hull W.E., Traving B.C. and Maier-Borst W. (1986). Synthesis and purification of 2-deoxy-2-[18F]fluoro-D-glucose and 2-deoxy-2-[l8F]fluoro-D-mannose: characterization of products by 1H- and 19F-NMR spectroscopy. Appl. Radiat. Isot., 37, 695.CrossRefGoogle Scholar
  31. Pascali C., Luthra S.K., Pike V.W., Price G.W., Ahier R.G., Hume S.P., Myers R., Manjil L. and Cremer J.E. (1990) The Radiosynthesis of [18F]PK 14105 as an alternative radioligand for peripheral type benzodiazepine binding sites. Appl. Radiat. Isot. 41, 477.CrossRefGoogle Scholar
  32. Pike V.W., Eakins M.N., Allan R.M. and Selwyn A.P. (1982) Preparation of [1–11C]acetate - an agent for the study of myocardial metabolism by positron emission tomography. Int. J. Appl. Radiat. Isot., 33, 505.PubMedCrossRefGoogle Scholar
  33. Pike V.W., Kensett M.J, Turton D.R., Waters S.L. and Silvester D.J. (1990) Labelled agents for PET Studies of the dopaminergic system - some quality assurance methods, experience and issues. Appl. Radiat. Isot. 41, 483.CrossRefGoogle Scholar
  34. Sachs C. and Jonsson G. (1972). Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenalin neurons. Brain Res., 40, 563.PubMedCrossRefGoogle Scholar
  35. Sharp J.R. (1983) Editor: ‘Guide to good pharmaceutical manufacturing practice’ published by HMSO, London.Google Scholar
  36. Strijckmans K., Sambre J. and De Guchteneire F. (1989) Automated production and quality control of 1502 and C15O2. J. Label. Compd Radiopharm., 26, 458.CrossRefGoogle Scholar
  37. Turton D.R., Brady F., Pike V.W., Selwyn A.P., Shea M.J., Wilson R.A. and De Landsheere C.M. (1984). Preparation of human serum [methyl-11C]methylalbumin microspheres and human serum [methyl-11C]methylalbumin for clinical use. Int. J. Appl. Radiat. ‘sot., 35, 337.CrossRefGoogle Scholar
  38. Turton D.R., Sohanpal S.K. and Pike V.W. (1985) A modified procedure for the preparation of the radiopharmaceutical, 3–0-(11C)methyl-D-glucose. J. Label. Compd Radiopharm., 21, 1211.Google Scholar
  39. Ulin J., Gee A.D., Malmborg P., Tedroff J. and Längström B. (1989) Synthesis of racemic (+) and (-) N-[methyl-11C]nomifensine, a ligand for evaluation of monoamine re-uptake sites by use of Positron Emission Tomography. Appl. Radiat. Isot., 40, 171.CrossRefGoogle Scholar
  40. Vera Ruiz H., Marcus C.S., Pike V.W., Coenen H.H., Fowler J.S., Meyer G.J., Cox P.H., Vaaalburg W., Cantineau R., Helus F. and Lambrecht R.M.N. (1990) Report of an International Atomic Energy Agency’s Advisory Group Meeting on “Quality control of cyclotron-produced radiopharmaceuticals”. Nucl. Med. Biol., 17, 445.Google Scholar
  41. Wolf A.P. (1981) Synthesis of organic compounds labeled with positron emitters and the carrier problem. J. Label. Compd Radiopharm., 18, 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • V. W. Pike
    • 1
  • S. L. Waters
    • 1
  • M. J. Kensett
    • 1
  • D. Bateman
    • 1
  • D. Considine
    • 1
  • D. R. Turton
    • 1
  • S. K. Luthra
    • 1
  • F. Brady
    • 1
  • A. Shah
    • 1
  • F. Shah
    • 1
  • D. J. Silvester
    • 1
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK

Personalised recommendations