Chemistry and Concept for an Automated 72Se/72As Generator

  • D. R. Phillips
  • V. T. Hamilton
  • D. A. Nix
  • W. A. Taylor
  • D. J. Jamriska
  • R. C. Staroski
  • R. A. Lopez
  • A. M. Emran

Abstract

The growth of positron emission tomography (PET), with its unique capability to image function as well as structure, depends very much on the availability of positron emitting radioisotopes. Arsenic-72 is a radionuclide possessing significant potential as a PET radioisotope. A wide variety of bone, brain, and tumor seeking agents can be labeled with 72As. A 72Se/72As radiochemical generator would allow on-site recovery of high specific activity 72As for PET research and applications. We have developed a reliable, simple separation chemistry which could be neatly automated for a safe, easy-to-use generator.

Keywords

Positron Emission Tomography Selenic Acid Selenious Acid Positron Emission Tomography Radiopharmaceutical Positron Emission Tomography Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Browne and R. B. Firestone, in: “Table of Radioactive Isot,” V. S. Shirley, ed., John Wiley and Sons, New York(1986).Google Scholar
  2. 2.
    A. M. Emran and D. R. Phillips, in: this volume.Google Scholar
  3. 3.
    A. Emran, F. Hosain, R. P. Spencer, and K S. Kolstad, Int. J. Nucl. Med. Biol. 11: 259 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    G. L. Brownell and W. H. Sweet, Nucleonics 11: 40 (1953).Google Scholar
  5. 5.
    J. Mealey, G. L. Brownell, and W. H. Sweet, Arch. Neurol. Psychiat. 81: 310 (1959).CrossRefGoogle Scholar
  6. 6.
    J. L. Mego and J. D. McQueen, Cancer Res. 23: 523 (1963).PubMedGoogle Scholar
  7. 7.
    Private communication with K. Ott and J. Mercer-Smith, INC-11, Los Alamos National Laboratory.Google Scholar
  8. 8.
    P. Hosain, P. K. Sripada, R. P. Spencer, and F. Hosain, Int. J. Nucl Med. and Biol. 8: 209 (1981).CrossRefGoogle Scholar
  9. 9.
    F. Hosain, P. K. Sripada, P. Hosain, A. Emran, and R. P. Spencer, Substitution of Arsenic for Phosphorus, in: “Radiopharmaceuticals: Structure Activity Relationships,” R. P. Spencer, ed., Grune and Straton, New York (1981).Google Scholar
  10. 10.
    H. C. Beard and J. G. Cuninghame, “Radiochemistry of Arsenic,” United States Atomic Energy Commission, Springfield, VA (1965).Google Scholar
  11. 11.
    Private communication with Malcom M. Fowler, INC-11, Los Alamos National Laboratory.Google Scholar
  12. 12.
    R. Bye, Talanta 30: 993 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    S. H. Al-Kouraishi and G. G. J. Boswell, Int. J. Appl. Radiat. Isot. 29: 607 (1978).CrossRefGoogle Scholar
  14. 14.
    R. Weinreich, R. Schwarzback, A. B. Alfassi, and P. Smith-Jones,,L Lab. Comp. Radiopharm. 26: 146 (1989).CrossRefGoogle Scholar
  15. 15.
    D. R. Phillips, D. C. Moody, W. A. Taylor, N. J. Segura, and B. D. Pate, Appl. Radiat. Isot. Int. J. Radiat. Appl. Instrum. Part A. 38: 521 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. R. Phillips
    • 1
  • V. T. Hamilton
    • 1
  • D. A. Nix
    • 1
  • W. A. Taylor
    • 1
  • D. J. Jamriska
    • 1
  • R. C. Staroski
    • 1
  • R. A. Lopez
    • 1
  • A. M. Emran
    • 2
  1. 1.Isotopes and Nuclear Chemistry Group 11Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Cyclotron FacilityPositron Diagnostic and Research Center The University of Texas Health Science CenterHoustonUSA

Personalised recommendations