Chemical Interfaces: Structure, Properties and Relaxation

  • A. Ourmazd
Part of the NATO ASI Series book series (NSSB, volume 281)

Abstract

Any finite system is delimited by interfaces. In this trivial sense interfaces are ubiquitous. However, modern epitaxial techniques seek to modify the properties of materials by the creation of interfaces. ‘Band gap engineering’, the attempt to tailor the electronic properties of semiconductors by interleaving many dissimilar layers is an extreme example of this approach. Technologically most advanced and thus most widely used are interfaces between lattice-matched, isostructural, crystalline systems, differing only in composition. These ‘chemical’ interfaces, are formed by the introduction of dopant impurities, or by the stacking of dissimilar materials. Chemical interfaces formed by the epitaxial growth of dissimilar materials are the subject of this article.

Keywords

Interdiffusion Coefficient Interfacial Roughness GaAs Surface Chemical Interface Atomic Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CA. Warwick, W.Y. Jan, A. Ourmazd, T.D. Harris and J. Christen, Appl. Phys. Lett., in press.Google Scholar
  2. [2]
    M. Thomsen and A. Madhukar, J. Cryst. Growth, 84, 98, (1987).ADSCrossRefGoogle Scholar
  3. [3]
    S.B. Ogale, A. Madhukar, F. Voillot, M. Thomsen, W.C. Tang, T.C. Lee, Y. Kim and P. Chen, Phys. Rev. B36, 1662, (1987).ADSGoogle Scholar
  4. [4]
    See e.g. J.C.H. Spence, Experimental High Resolution Electron Microscopy, Oxford Univ. Press, New York, 1980).Google Scholar
  5. [5]
    P.M. Petroff, A.Y. Cho, F.K. Reinhart, A.C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 48, 170 (1982).ADSCrossRefGoogle Scholar
  6. [6]
    A. Ourmazd, J.A. Rentschler, and D.W. Taylor, Phys. Rev. Lett. 57, 3037, (1986).Google Scholar
  7. [7]
    A. Ourmazd, W.T. Tsang, J.A. Rentschler, and D.W. Taylor, Appl. Phys. Lett., 50, 1417, (1987).ADSCrossRefGoogle Scholar
  8. [8]
    A. Ourmazd, and J.C.H. Spence, Nature 329, (1987).Google Scholar
  9. [9]
    A. Ourmazd, J. Cryst. Growth 98, 72, (1989).ADSCrossRefGoogle Scholar
  10. [10]
    J.M. Penisson and A. Bourret, private communication.Google Scholar
  11. [11]
    C.W. Tu, R.C. Miller, B.A. Wilson, P.M. Petroff, T.D. Harris, R.F. Kopf, S.K. Sputz, and M.G. Lamont, J. Cryst. Growth 81, 159 (North-Holland 1987).Google Scholar
  12. [12]
    R.C. Miller, C.W. Tu, S.K. Sputz, and R.F. Kopf, Appl. Phys. Lett. B 49, 1245, (1986).ADSCrossRefGoogle Scholar
  13. [13]
    P.M. Petroff, J. Cibert, A.C. Gossard, G.J. Dolan, and C.W. Tu, J. Vac. Sci. & Technol., B5, 1204 (1987).CrossRefGoogle Scholar
  14. [14]
    A. Ourmazd, D.W. Taylor, J. Cunningham and C.W. Tu, Phys. Rev. Lett. 62, 933, (1989).ADSCrossRefGoogle Scholar
  15. [15]
    A. Ourmazd, D.W. Taylor, M. Bode and Y. Kim, Science 246, 1572, (1989).ADSCrossRefGoogle Scholar
  16. [16]
    C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Comm. 38, 709 (1981).ADSCrossRefGoogle Scholar
  17. [17]
    M. Tanaka, H. Sakaki, and J. Yoshino, Jap. J. Appl. Phys. 25, L155, (1986).ADSCrossRefGoogle Scholar
  18. [18]
    D. Bimberg, J. Christen, T. Fukunaga, H. Nakashima, D.E. Mars, and J.N. Miller, J. Vac. Sci. Technol., B5, 1191, (1987).Google Scholar
  19. [19]
    J.C. Reynolds, K.K. Bajaj, C.W. Litton, P.W. Yu, J. Singh, W.T. Masselink, R. Fischer and H. Morkoc, Appl. Phys. Lett. 46, 51 (1985).ADSCrossRefGoogle Scholar
  20. [20]
    H. Sakai, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).ADSCrossRefGoogle Scholar
  21. [21]
    See e.g., D.G. Deppe and N. Holonyak, Jr., J. Appl. Phys. 64, R93, (1988).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Kim, A. Ourmazd, M. Bode, and R.D. Feldman, Phys. Rev. Lett. 63, 636, (1989).ADSCrossRefGoogle Scholar
  23. [23]
    Y. Kim, A. Ourmazd, R.J. Malik, and J.A. Rentschler, Proc. Mat. Res. Soc, in press.Google Scholar
  24. [24]
    L.J. Guido, N. Holonyak, Jr., K.C. Hsieh, and J.E. Baker, Appl. Phys. Lett. 54, 262 (1989).ADSCrossRefGoogle Scholar
  25. [25]
    Y. Kim, A. Ourmazd, and R.D. Feldman, J. Vac. Sci., Technol. A8, 1116, (1990).ADSGoogle Scholar
  26. [26]
    M. Bode, A. Ourmazd, J.A. Rentschler, M. Hong, L.C. Feldman, and J.P. Mannaerts, Proc. Mat. Res. Soc, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. Ourmazd
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations