Torsion, Quantum Effects and the Problem of Cosmological Constant

  • Venzo de Sabbata
  • C. Sivaram
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 56)

Abstract

This symposium on the cosmological constant problem is being held concurrently with the workshop dealing with challenge in Tev physics. If one considers that the highest conceivable energy scale in either accelerator physics or cosmology is the Planck energy (ћc5/G)1/2 ≃ 1019Gev = EP1 and noting that the energy of the 2. 7° Kelvin cosmic microwave background photon is E γ ≃ 10–13Gev (in high energy parlance!) then we have the interesting coincidence (to be taken in lighter spirit!):
$$({E_{PL}} \times E\gamma ) \simeq oneTev!$$
(1)
Thus the Tev scale emerging as the geometric mean between the highest and lowest energy scales in big bang cosmology may serve as a unifying link connecting the two symposia on seemingly very different topics! After all the big bang was the biggest accelerator one could ever have had, but unfortunately now is in the deceleration phase with very low energy of 10-13Gev! Of course we also have the postulated baryon number violation at Tev scales with its own profound cosmological consequences including relic Tev particles! Since this has been dealt with by other people we would not talk about this aspect any further in this article!

Keywords

Cosmological Constant Early Universe Vacuum Energy Planck Length Cosmological Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fukujta, F. Takahara, K. Yamashita and Y. Yoshii: Ap. J. Lett. 361, 11 (1990)Google Scholar
  2. 2.
    H. R. Butcher: Nature 328, 127 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Borgeest and S. Refsdal: Astron. Astrophys. 141, 318 (1985)Google Scholar
  4. 4.
    M. Fukujta and C. Hogan: Nature 347, 120 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    C. Sivaram: Astrophys. Space Sci. 125, 189 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    C. Sivaram: Int. J. Theor. Phys. 25, 825 (1986)CrossRefGoogle Scholar
  7. 7.
    G. H. Jacoby, R. Ciardullo and H. Ford: Astrophys. J. 356, 332 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg: Rev. Mod. Phys. 61, 1 (1989)ADSMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    V. de Sabbata: Giornale di Astronomia, 275 (1984); Vatican Observatory Publ., 43 (1987)Google Scholar
  10. 10.
    C. Sivaram: Astrophys. Space Sci. 127, 33 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    A. D. Dolgov: in ‘The very early universe’ ed. by G. Gibbons et al. Cambridge University Press 1982 pg. 449Google Scholar
  12. 12.
    F. Wilczek: in ‘Proc. of 21th Course of SubnuclearPhysics’ ed. by A. Zichichi, Plenum Publ. Corp. N. Y. 1985 pg. 208Google Scholar
  13. 13.
    S. Coleman: Nucl. Phys. B307, 867 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    A. Einstein and N. Rosen: Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  15. 15.
    V. de Sabbata and C. Sivaram: Astrophys. Space Sci. 165, 51 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    V. de Sabbata and C. Sivaram: Astrophys. pace Sci. 158, 347 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    V. de Sabbata and C. Sivaram: Int. J. Theor. Phys. in pressGoogle Scholar
  18. 18.
    V. de Sabbata and G. Gasperini: ‘Introduction to Gravitation’ World Sci. Singapore 1985Google Scholar
  19. 19.
    C. Sivaram and K. Sinha: Nuovo Cimento Lett. 13, 1357 (1975)CrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Sivaram and K. Sinha: Phys. Rep. 51, 111 (1979)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Carmeli: Group Theory and General Relativity McGraw Hill N. Y. 1984Google Scholar
  22. 22.
    V. de Sabbata, C. Sivaram, D. Wang: Ann der Phys. 47, 508 (1990)Google Scholar
  23. 23.
    M. Duff: Phys. Lett. 226B, 36 (1989)MathSciNetGoogle Scholar
  24. 24.
    F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester: Rev. Mod. Phys. 48, 393 (1976)ADSCrossRefGoogle Scholar
  25. B. Kuchowicz: Acta Cosmological Z. 3 109 (1975)ADSGoogle Scholar
  26. 25.
    C. Sivaram, K. Sinha and E. A. Lord: Nature 249, 64 (1974)CrossRefGoogle Scholar
  27. 26.
    V. de Sabbata and M. Gasperini: Lett. Nuovo Cimento 27, 133 (1980)ADSCrossRefGoogle Scholar
  28. V. de Sabbata and C. Sivaram: Il Nuovo Cimento 102B, 107 (1988)CrossRefGoogle Scholar
  29. 27.
    V. de Sabbata and C. Sivaram: ‘Torsion and Quantum effects’ in volume devoted to 85th jubilee of D. D. Ivanenko, World Sci. Singapore 1991Google Scholar
  30. 28.
    C. Sivaram, K. Sinha and E. C. G. Sudarshan: Found. Phys. 6, 717 (1976)ADSCrossRefGoogle Scholar
  31. 29.
    V. de Sabbata and C. Sivaram: Astrophys. Space Sci. 1990 in pressGoogle Scholar
  32. 30.
    V. de Sabbata and C. Sivaram: ‘Negative mass and Torsion’ in volume devoted to 80th Ya. P. Terletsky jubilee, Moscow 1991Google Scholar
  33. 31.
    V. de Sabbata and C. Sivaram: ‘The final state of an evaporating black hole’ in “Quantum Mechanics in curved space-time ed. by J. Audretsch and Venzo de Sabbata, Plenum Publ. Corp. N. Y. 1990Google Scholar
  34. 32.
    V. de Sabbata and C. Sivaram: in preparationGoogle Scholar
  35. 33.
    V. de Sabbata and G. Gasperini: Nuovo Cimento Lett. 25, 489 (1979)ADSCrossRefGoogle Scholar
  36. 34.
    V. de Sabbata and G. Gasperini: J. T. S. C., Journal of Tensor Society of India,Lucknow 1, 39 (1983)Google Scholar
  37. V. de Sabbata and G. Gasperini: Nuovo Cimento Lett. 22, 605 (1983)ADSCrossRefGoogle Scholar
  38. 35.
    V. Rubakov: private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Venzo de Sabbata
    • 1
  • C. Sivaram
    • 1
  1. 1.World Laboratory – Lausanne Department of Physics of Ferrara University FerraraItaly Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations