String Theory and the Quantization of Gravity

  • N. Sánchez
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 56)

Abstract

Perhaps the main challenge in theoretical physics today is the unification of all interactions including. gravity. At present, string theories appear as the best candidates to achieve such an unification. However, several technical and conceptual problems remain and a quantum theory of gravity is still non-existent. Continuous effort over the last quarter of a century has demonstrated the many difficulties encountered in repeated attempts to construct such a theory and has also indicated some of the particular properties which an eventual complete theory will have to posses. The amount of work in that direction can be by now presented in two different sets which have most evolved (and remain) separated: (i) conceptual unification (introduction of the uncertainty principle in general relativity, the interpretation problem and the concept of ‘observables’, Q.F.T. in curved space time and by accelerated observers, Hawking radiation and its consequences, the Wheeler-De Witt equation and the “wave function of the universe”...) (ii) grand unification (the unification of all interactions including gravity from the particle physics point of view, in which, gravity is considered as a massless spin two particle ( the graviton), such as in supergravities, Kaluza-Klein theories and the more succefull: superstrings).

Keywords

Black Hole Vertex Operator Cosmic String Point Particle Grand Unify Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example: K.G. Wilson, Revs. Mod. Phys. 47, 773 (1975) and 55, 583 (1983).CrossRefGoogle Scholar
  2. 2.
    N. Sanchez, Phys. Lett. B195, 160 (1987).MathSciNetGoogle Scholar
  3. 3.
    H.J. de Vega and N. Sanchez, Nucl. Phys. B299, 818 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    N. Sanchez, “Quantum strings in curved space-times”, Erice lectures May 2–12, 1989, in “Quantum Mechanics in curved space-time”, J.Audretsch and V. de Sabbata, eds., Plenum Publ. Co., pp 265–315 (1991).Google Scholar
  5. 5.
    C. Lovelace, Phys. Lett. B135, 75 (1984);MathSciNetGoogle Scholar
  6. E.S. Fradkin and A.A. Tseytlin, Phys. Lett. B158, 316 (1985);MATHMathSciNetGoogle Scholar
  7. C.G. Callan et al., Nucl. Phys. B262, 593 (1985).ADSCrossRefMathSciNetGoogle Scholar
  8. 6.
    N. Sanchez and G. Veneziano, Nucl. Phys. B333, 253 (1990).ADSCrossRefGoogle Scholar
  9. 7.
    D. Amati, M. Ciafaloni, and G. Veneziano, Int. J. of Mod. Phys. 7, 1615 (1988).ADSCrossRefGoogle Scholar
  10. 8.
    H.J. de Vega and N. Sanchez, Nucl.Phys. B317, 706 and 731 (1989).Google Scholar
  11. 9.
    D. Amati and C. Klimcik, Phys.Lett. B210, 92 (1988).MathSciNetGoogle Scholar
  12. 10.
    H.J. de Vega and N. Sanchez, Phys. Lett. B197, 320 (1987).MathSciNetGoogle Scholar
  13. 11.
    H.J. de Vega and N. Sanchez, Nucl. Phys. B309, 552 and 577 (1988).Google Scholar
  14. 12.
    N. Sanchez, Phys. Rev. D18, 1798 (1978).ADSGoogle Scholar
  15. 13.
    H.J. deVega, M. Ramon-Medrano and N. Sanchez, Nucl. Phys. B351, 227 (1991).ADSMathSciNetGoogle Scholar
  16. 14.
    G. t’ Hooft, Phys. Lett. B198, 61 (1987).Google Scholar
  17. 15.
    G. Veneziano, Mod. Phys. Lett. A2, 899 (1987);Google Scholar
  18. V. Ferrari, P. Pendenza and G. Veneziano, Gen. Rel. Gray. 20, 1185 (1988).ADSMATHCrossRefMathSciNetGoogle Scholar
  19. 16.
    C.O. Lousto and N. Sanchez, I.J.M.P A5, 915 (1990).Google Scholar
  20. 17.
    C.O. Lousto and N. Sanchez, Phys. Lett. B232, 462 (1989).MathSciNetGoogle Scholar
  21. 18.
    C.O. Lousto and N. Sanchez, Meudon-DEMIRM preprint 91007 (to appear in Nucl. Phys. B).Google Scholar
  22. 19.
    G.T. Horowitz and A.R. Steif, Phys. Rev. Lett. 64, 260 (1990).ADSMATHCrossRefMathSciNetGoogle Scholar
  23. 20.
    H.J. de Vega and N. Sanchez, Phys. Rev. Lett. (C) 65, 1567 (1990).CrossRefGoogle Scholar
  24. 21.
    H.J. de Vega and N. Sanchez, Phys. Lett. B244, 215 (1990) and LPTHE preprint 90–47.Google Scholar
  25. 22.
    G. Gibbons, Comm. Math. Phys.45, 191 (1975). S. Deser, J. Phys. A8, 1972 (1975).Google Scholar
  26. 23.
    M. Gasperini, N. Sanchez and G. Veneziano, CERN-TH 5893/90, DFTT-30/90 and Meudon-DEMIRM 90091 preprint (to appear in IJMPA).Google Scholar
  27. 24.
    M. Gasperini, N. Sanchez and G. Veneziano, CERN-TH 6010/91, DFTT 06/91 and Meudon-DEMIRM 91004 preprint.Google Scholar
  28. 25.
    H.J. de Vega and N. Sanchez, LPTHE 90–48 preprint.Google Scholar
  29. 26.
    G.T. Horowitz and A.R.Steif, Phys. Rev. D42, 1950 (1990).ADSGoogle Scholar
  30. 27.
    H.J. de Vega and N. Sanchez, Phys. Rev. D42, 3969 (1990).MathSciNetGoogle Scholar
  31. 28.
    J. A. Bagger, C.G. Callan and J.A. Harvey, Nucl. Phys. B278, 550 (1986). See also L. Dixon, J. A. Harvey, C. Vafa and E. Witten, ibid. B261, 67 (1985); B274, 285 (1986);Google Scholar
  32. D. Gepner and E. Witten, ibid. B278, 493 (1986).MathSciNetGoogle Scholar
  33. 29.
    S. Deser and R. Jackiw, Commun. Math. Phys. 118, 495 (1988).ADSMATHCrossRefMathSciNetGoogle Scholar
  34. 30.
    G.’t Hooft, Comm. Math. Phys. 117, 685 (1988).ADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • N. Sánchez
    • 1
  1. 1.Section de Meudon, DemirmObservatoire de ParisMeudon Principal CedexFrance

Personalised recommendations