Amino Acid Sequence Data and Evolutionary Relationships among Hystricognaths and Other Rodents

  • Jaap J. Beintema
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)

Abstract

The study of metabolic pathways and of biomacromolecules like proteins and nucleic acids supplies molecular data useful for deriving evolutionary relationships between taxa.

Keywords

Parsimonious Tree Spiny Mouse Pancreatic Ribonuclease Amino Acid Sequence Data Muroid Rodent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, M., Blundell, T. L. and Wood, S. P. 1984. Evolution in the insulin family: molecular clocks that tell the wrong time. Biochem. Soc. Trans. 12.Google Scholar
  2. Baldwin, E. 1949. An Introduction to Comparative Biochemistry, 3rd edition, Cambridge University Press, Cambridge.Google Scholar
  3. Barnard, E. A. 1969. Biological function of pancreatic ribonuclease. Nature 221: 340–344.PubMedCrossRefGoogle Scholar
  4. Beintema, J. J. 1977. Orthologous nature of mammalian insulin genes. J. Mol. Evol. 9: 363–366.PubMedCrossRefGoogle Scholar
  5. Beintema, J. J. 1983a. Molecular evolution of mammalian pancreatic ribonucleases. In: Numerical Taxonomy, J. Felsenstein, ed., pp. 479–483, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  6. Beintema, J. J. 1983b. Rat pancreatic ribonuclease: agreement between the corrected amino acid sequence and the sequence derived from its messenger RNA. FEBS Lett. 159: 191–195.PubMedCrossRefGoogle Scholar
  7. Beintema, J. J. and Gruber, M. 1973. Rat pancreatic ribonuclease. II. Amino acid sequence. Biochim. Biophys. Acta 310: 161–173.PubMedCrossRefGoogle Scholar
  8. Beintema, J. J., Knol, G. and Martena, B. 1982. The primary structures of pancreatic ribonucleases from African porcupine and casiragua, two hystricomorph rodent species. Biochim. Biophys. Acta 705: 102–110.PubMedCrossRefGoogle Scholar
  9. Beintema, J. J. and Lenstra, J. A. 1982. Evolution of mammalian pancreatic ribonucleases. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 43–73, Plenum Press, New York.CrossRefGoogle Scholar
  10. Beintema, J. J. and Martena, B. 1982. Primary structure of porcupine (Hystrix cristata) pancreatic ribonuclease. Close relationship between African porcupine (an Old World hystricomorph) and New World caviomorphs. Mammalia 46: 253–257.Google Scholar
  11. Beintema, J. J. and Neuteboom, B. 1983. Origin of the duplicated ribonuclease gene in guinea-pig: comparison of the amino acid sequences with those of close relatives: capybara and cuis ribonuclease. J. Mol. Evol. 19: 145–152.PubMedCrossRefGoogle Scholar
  12. Beintema, J. J., Scheffer, A. J., van Dijk, H., Welling, G. W. and Zwiers, H. 1973. Pancreatic ribonuclease: distribution and comparison in mammals. Nature (New Biol.) 241: 76–78.Google Scholar
  13. Blundell, T. L., Pitts, J. E. and Wood, S. P. 1982. The conformation and molecular biology of pancreatic hormones and homologous growth factors. CRC Crit. Rev. Biochem. 13: 141–213.PubMedCrossRefGoogle Scholar
  14. Blundell, T. L. and Wood, S. P. 1975. Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature 257: 197–203.PubMedCrossRefGoogle Scholar
  15. Bünzli, H. F. and Humbel, R. E. 1972. Isolation and partial structural analysis of insulin from mouse (Mus musculus) and spiny mouse (Acomys cahirinus). Z. Physiol. Chem. 353: 444–450.CrossRefGoogle Scholar
  16. Carlson, S. S., Mross, G. A., Wilson, A. C., Mead, R. T., Wolin, L. D., Bowers, S. F., Foley, N. T., Muijsers, A. O. and Margoliash, E. 1977. Primary structure of mouse, rat and guinea pig cytochrome c. Biochemistry 16: 1437–1442.PubMedCrossRefGoogle Scholar
  17. Chua, C. G., Carrell, R. W. and Howard, B. H. 1975. The amino acid sequence of the a chain of the major haemoglobin of the rat (Rattus norvegicus). Biochem. J. 149: 259–269.PubMedGoogle Scholar
  18. Dayhoff, M. O. 1976a. The origin and evolution of protein superfamilies. Fed. Proc. 35: 2132–2138.PubMedGoogle Scholar
  19. Dayhoff, M. O. 1976b. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2. National Biomedical Research Foundation, Washington, D. C.Google Scholar
  20. Dayhoff, M. O. 1978. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, D. C.Google Scholar
  21. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406–416.CrossRefGoogle Scholar
  22. Fitch, W. M. 1977. Phylogenies constrained by the crossover process as illustrated by human hemoglobins and a thirteen-cycle, eleven-amino-acid repeat in human apolipoprotein A-I. Genetics 86: 623–644.PubMedGoogle Scholar
  23. Fitch, W. M. and Yasunobu, K. T. 1975. Phylogenies from amino acid sequences aligned with gaps: The problem of gap weighting. J. Mol. Evol. 5: 1–24.PubMedCrossRefGoogle Scholar
  24. Garrick, L. M., Sloan, R. L., Ryan, T. W., Klonowski, T. J. and Garrick, M. D. 1978. Primary structure of the major β-chain of rat haemoglogins. Biochem. J. 173: 321–330.PubMedGoogle Scholar
  25. Gilman, J. G. 1976. Mouse haemoglobin beta chains. Comparative sequence data on adult major and minor beta chains from two species, Mus musculus and Mus cervicolor. Biochem. J. 159: 43–53.PubMedGoogle Scholar
  26. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J. and Tashian, R. E. 1982. Amino acid sequence evidence on the phylogeny of primates and other eutherians. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 115–191, Plenum Press, New York.CrossRefGoogle Scholar
  27. Horuk, R., Blundell, T. L., Lazarus, N. R., Neville, R. W. J., Stone, D. and Wollmer, A. 1980. A monomeric insulin from the porcupine (Hystrix cristata), an Old World hystricomorph. Nature 286: 822–824.PubMedCrossRefGoogle Scholar
  28. Horuk, R., Goodwin, P., O’Connor, K., Neville, R. W. J., Lazarus, N. R. and Stone, D. 1979. Evolutionary change in the insulin receptors of hystricomorph rodents. Nature 279: 439–440.PubMedCrossRefGoogle Scholar
  29. Jekel, P. A., Sips, H. J., Lenstra, J. A. and Beintema, J. J. 1979. The amino acid sequence of hamster pancreatic ribonuclease. Biochimie 61: 827–839.PubMedCrossRefGoogle Scholar
  30. Lenstra, J. A. and Beintema, J. J. 1979. The amino acid sequence of mouse pancreatic ribonuclease. Extremely rapid evolutionary rates of the myomorph rodent ribonuclease. Eur. J. Biochem. 98: 399–408.PubMedCrossRefGoogle Scholar
  31. Lenstra, J. A., Hofsteenge, J. and Beintema, J. J. 1977. Invariant features of the structure of pancreatic ribonuclease: A test of different predictive models. J. Mol. Biol. 109: 185–193.PubMedCrossRefGoogle Scholar
  32. MacDonald, R. J., Stary, S. J. and Swift, G. H. 1982. Rat pancreatic ribonuclease messenger RNA. The nucleotide sequence of the entire mRNA and the derived amino acid sequence of the pre-enzyme. J. Biol. Chem. 257: 14582–14585.PubMedGoogle Scholar
  33. Mahlberg, P. G. and Pleszczynska, J. 1983. Phylogeny of Euphorbia interpreted from sterol composition of latex. In: Numerical Taxonomy, J. Felsenstein, ed., pp. 500–504, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  34. Markussen, J. 1971. Mouse insulins-separation and structures. Int. J. Pept. Prot. Res. 3: 149–155.Google Scholar
  35. Moloney, P. J. and Coval, M. 1955. Antigenicity of insulin: Diabetes induced by specific antibodies. Biochem. J. 59: 179–185.PubMedGoogle Scholar
  36. Neelon, F. A., Delcher, H. K., Steinman, H. M. and Lebovitz, H. E. 1975. A comparison of the structure of hamster pancreatic insulin and the insulin extracted from a transplantable hamster islet-cell carcinoma. Biochim. Biophys. Acta 412: 1–12.PubMedCrossRefGoogle Scholar
  37. Peacock, D. and Boulter, D. 1975. Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation. J. Mol. Biol. 95: 513–527.PubMedCrossRefGoogle Scholar
  38. Popp, R. A. 1967. Hemoglobins of mice: Sequence and possible ambiguity at one position of the alpha chain. J. Mol. Biol. 27: 9–16.PubMedCrossRefGoogle Scholar
  39. Richardson, P. M. 1983. Methods of flavonoid data analysis. In: Numerical Taxonomy, J. Felsenstein, ed., pp. 495–499, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  40. Rosenzweig, J. L., Le Roith, D., Lesniak, M. A., MacIntyre, I., Sawyer, W. H. and Roth, J. 1983. Two distinct insulins in the guinea pig: The broad relevance of these findings to evolution of peptide hormones. Fed. Proc. 42: 2608–2614.PubMedGoogle Scholar
  41. Smith, L. F. 1966. Species variation in the amino acid sequence of insulin. Am. J. Med. 40: 662–666.PubMedCrossRefGoogle Scholar
  42. Starace, V. and Querinjean, P. 1975. The primary structure of a rat K Bence Jones protein: Phylogenetic relationships of V-and C-region genes. J. Immunol. 75: 59–62.Google Scholar
  43. Stryer, L. 1981. Biochemistry, 2nd ed. W. H. Freeman and Company, San Francisco.Google Scholar
  44. Svasti, J. and Milstein, C. 1972. The complete amino acid sequence of a mouse K light chain. Biochem. J. 128: 427–444.PubMedGoogle Scholar
  45. Van den Berg, A. and Beintema, J. J. 1975. Non-constant evolution rates in pancreatic ribonucleases from rodents. Amino acid sequences of guinea pig, chinchilla and coypu ribonucleases. Nature 253: 207–210.PubMedCrossRefGoogle Scholar
  46. Van den Berg, A., van den Hende-Timmer, L. and Beintema, J. J. 1976. Isolation, properties and primary structure of coypu and chinchilla pancreatic ribonuclease. Biochim. Biophys. Acta 453: 400–409.CrossRefGoogle Scholar
  47. Van den Berg, A., van den Hende-Timmer, L., Hofsteenge, J., Gaastra, W. and Beintema, J. J. 1977. Guinea-pig pancreatic ribonucleases. Isolation, properties, primary structure and glycosidation. Eur. J. Biochem. 75: 91–100.PubMedCrossRefGoogle Scholar
  48. Van Dijk, H., Sloots, B., van den Berg, A., Gaastra, W. and Beintema, J. J. 1976. The primary structure of muskrat pancreatic ribonuclease. Int. J. Pept. Prot. Res. 8: 305–316.CrossRefGoogle Scholar
  49. Wilson, A. C., Carlson, S. S. and White, T. J. 1977. Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Jaap J. Beintema
    • 1
  1. 1.Biochemisch LaboratoriumRijksuniversiteitGroningenThe Netherlands

Personalised recommendations