Synthesis and Processing Relevant to Systems Integration of Nonlinear Optical Materials

  • A. W. Harper
  • A. Hubbel
  • J. Laquindanum
  • Y. Ra
  • L. R. Dalton

Abstract

The various synthesis and processing steps required to fabricate prototype electro-optic modulators from polymeric materials containing nonlinear optical (NLO) chromophores are discussed. These include (1) synthesis of chromophores with large first hyperpolarizabilities, (2) covalent incorporation of these chromophores into polymer lattices which can be processed into optical quality thin films and poled by application of electric fields, (3) induction of lattice hardening reactions which lock-in poling-induced noncentrosymmetric order, (4) creation of buried channel, nonlinear optical waveguides by reactive ion etching, by electron cyclotron resonance etching, and/or by photochemical processing, (5) coupling of buried channel electro-optic modulators to fiber optic transmission lines by silicon V groove techniques, (6) deposition of metal drive electrodes (integration of semiconductor electronics and optical circuitry) and evaluation of prototype devices.

Keywords

Lithium Niobate Electron Cyclotron Resonance Nonlinear Optical Material Electric Field Poling Polymer Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen and K. J. Shea, Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics, Chem. Mater.. 7:0000 (1995).CrossRefGoogle Scholar
  2. 2.
    Z. Liang, L. R. Dalton, S. M. Garner, S. Kalluri, A. Chen, and W. H. Steier, Crosslinkable polyimides for second-order optical nonlinearities, Chem. Mater. 7:0000 (1995).Google Scholar
  3. 3.
    Z. Yang, C. Xu, B. Wu, L. R. Dalton, S. Kalluri, W. H. Steier, Y. Shi, and J. H. Bechtel, Anchoring both ends of chromophores into sol-gel networks for large and stable second-order optical nonlinearities, Chem. Mater. 6:1899 (1994).CrossRefGoogle Scholar
  4. 4.
    S. Kalluri, Y. Shi, W. H. Steier, Z. Yang, C. Xu, B. Wu, and L. R. Dalton, Improved poling and thermal stability of sol-gel nonlinear optical polymers, Appl. Phys. Lett. 65:2651 (1994).CrossRefGoogle Scholar
  5. 5.
    H. W. Oviatt, Jr., K. J. Shea, S. Kalluri, Y. Shi, W. H. Steier, and L. R. Dalton, Applications of organic bridged polysilsesquioxane xerogels to nonlinear optical materials by the sol-gel method, Chem. Mater. 7:493 (1995).CrossRefGoogle Scholar
  6. 6.
    S. Gilmour, R. A. Montgomery, S. R. Marder, L.-T. Cheng, A. K.-Y. Jen, Y. M. Cai, J. W. Perry, and L. R. Dalton, Synthesis of diarylthiobarbituric acid chromophores with enhanced second-order optical nonlinearities, Chem. Mater. 6:1603 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. W. Harper
    • 1
  • A. Hubbel
    • 1
  • J. Laquindanum
    • 1
  • Y. Ra
    • 1
  • L. R. Dalton
    • 1
  1. 1.Loker Hydrocarbon Research Institute, Departments of Chemistry and of Materials Science and EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations