Limiting Factors in Operation and Fabrication of Organic Electroluminescence Devices

  • Jan Kalinowski

Abstract

A satisfactory explanation of the interrelation between performance parameters and fundamental electronic processes in organic electroluminescence (EL) devices (of which light-emitting diodes — LEDs, display screens and light transducers are most apparent) clearly exceeds the frames of this brief presentation. Therefore, the paper will be focused on some selected important aspects of operation and fabrication of organic LEDs.

Keywords

Organic Crystal Triplet Exciton Carrier Trap Degenerate Ground State Excitonic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Karl, Getting beyond impurity-limited transport in organic photoconductors, in: “Defect Control in Semiconductors”, vol.11, K. Sumino, ed., North Holland, Amsterdam (1990).Google Scholar
  2. 2.
    M. Pope and CE. Swenberg. “Electronic Processes in Organic Crystals”, Clarendon Press, New York (1982).Google Scholar
  3. 3.
    A. Bernanose, M. Compte and P. Vouaux, On a new mode of luminescence from some organic compounds, J. Chew. Physique 50: 64 (1953) (in French).Google Scholar
  4. 4.
    A. Bernanose and P. Vouaux, Organic electroluminescence: a study of the emission mode, J. Chem. Physique 50: 261 (1953) (in French).Google Scholar
  5. 5.
    A. Bernanose, Electroluminescence of organic compounds, Brit. J. Appl. Phys., Suppl. No. 4: 554 (1955).Google Scholar
  6. 6.
    A. G. Goldman, M.W. Kurik, Ya.I. Vertzimakha and B.N. Korolko, Electroluminescence of carbazole, Zhurn.Prikl.Opt. 14: 235 (1971) (in Russian).Google Scholar
  7. 7.
    N.P. Sinha, Y. Misra, L. Tripathi and M. Misra. Electro-optical properties of doped anthracene films. Solid State Commun. 39: 89 (1981).CrossRefGoogle Scholar
  8. 8.
    R. Morris and M. Silver, Direct electron-hole recombination in anthracene, J. Chem. Phys. 50: 2969 (1969).CrossRefGoogle Scholar
  9. 9.
    W. Helfrich, Space-charge-limited and volume-controlled currents in organic solids, in: “Physics and Chemistry of the Organic Solid State”, D. Fox, M.M. Labes and A. Weissberger, eds., Wiley, New York (1967).Google Scholar
  10. 10.
    J. Godlewski and J. Kalinowski, Injection-limited currents in insulators, Japon. J. Appi. Phys. 28: 24 (1989).CrossRefGoogle Scholar
  11. 11.
    J. Kalinowski, J. Godlewski and Z. Dreger, High-field recombination electroluminescence in vacuum- deposited anthracene and doped anthracene films, Appl. Phys. A31: 179 (1985).Google Scholar
  12. 12.
    D. Braun, E.G.J. Staring, R.C.J.E. Demandt, G.L.J. Rikken, Y.A.R.R. Kessener and A.H.J. Venhuizen, Photo- and electroluminescence efficiency in poly (dialkoxy-p-phenylenevinylene), Synth. Metals 66: 75 (1994).CrossRefGoogle Scholar
  13. 13.
    T. Tsutsui and S. Saito, Organic thin films for electroluminescence displays, in: “Polymers for Microelectronics — Science and Technology” (47), Y. Tabata, ed., Kodansha Press, Tokyo (1990).Google Scholar
  14. 14.
    C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Organic electroluminescence device with a three layer structure, Japan. J. Appl. Phys. 27: L713 (1988).CrossRefGoogle Scholar
  15. 15.
    P. Di Marco, J. Kalinowski, N. Camaioni, V. Fattori and G. Giro, A thermally stable organic lightemitting diode, in: “Advanced New Materials and Emerging New Technologies”, P.N. Prasad, E. Mark and J.F. Fung, eds., Plenum Press, New York (1995).Google Scholar
  16. 16.
    L. M. Do, E. M. Han, Y. Niidome, M. Fujihara, T. Kanno, S. Yoshida, A. Maeda and A. J. Ikushima, Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy, J. Appl. Phys. 76: 5118 (1994).CrossRefGoogle Scholar
  17. 17.
    W.R. Salaneck, Chemical and electronic structure of interfaces with conjugated polymer: system of interest in molecular electronics applications, in: “Advanced New Materials and Emerging Technologies”, P.N. Prasad, E. Mark and J.F. Fung, eds., Plenum Press, New York (1995).Google Scholar
  18. 18.
    J. Godlewski and J. Kalinowski, Photo-enhanced currents in organic insulators, Phys. Stat. Sol. (a) 53: 161 (1979).CrossRefGoogle Scholar
  19. 19.
    J. Kalinowski and R. Signerski, Exciton-enhanced double injection currents in tetracene crystals, Phys. Stat. Sol. (b) 118: K147 (1983).CrossRefGoogle Scholar
  20. 20.
    J. Godlewski and J. Kalinowski. Photoenhanced conductivity in organic crystals, Mol. Cryst. Liq. Cryst. 228: 61 (1993).CrossRefGoogle Scholar
  21. 21.
    J. Kalinowski and J. Godlewski, Luminescence modulation in organic crystals by exciton-charge carrier interaction, Acta Phys. Polonica A 46: 523 (1974).Google Scholar
  22. 22.
    J. Kalinowski, J. Godlewski and R.R. Chance, Evidence for trapped-exciton fluorescence in anthracene crystals at room temperature, J. Chem. Phys. 64: 2389 (1976).CrossRefGoogle Scholar
  23. 23.
    J. Kalinowski and J. Godlewski, Multi-charge carrier trapping in organic crystals: quantized internal macrotrap energy levels, Mol. Cryst. Liq. Cryst. 205: 101 (1991).CrossRefGoogle Scholar
  24. 24.
    J. Kalinowski, Space-resolved recombination electroluminescence in organic crystals, Synth. Metals 64: 123 (1994).CrossRefGoogle Scholar
  25. 25.
    J. Kalinowski and J. Godlewski, Singlet exciton-charge carrier interaction in anthracene crystals, Phys. Stat. Sol.(b) 35: 789 (1974).CrossRefGoogle Scholar
  26. 26.
    J. Kalinowski and J. Godlewski, Spatial behaviour of the charge created at the illuminated interface molecular crystal/electrolyte, Chem. Phys. 32: 201 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jan Kalinowski
    • 1
    • 2
  1. 1.Istituto di Fotochimica e Radiazioni d’Alta Energia del C.N.R.BolognaItaly
  2. 2.Department of Molecular PhysicsTechnical University of GdanskGdanskPoland

Personalised recommendations