History and Uses

  • C. Richard Cothern
Part of the Environmental Science Research book series (ESRH, volume 35)

Abstract

“He insisted that staff and students should understand orders of magnitude. They must know about how big physical quantitites are ... Not only did he know instinctively how big things are, he was very good indeed at mental arithmetic. No one else I ever knew could copy a dozen numbers down wrongly, add them up wrongly, and then come up with the right answer. It wasn’t really fair. He had furthermore an unrivaled ability to put himself in the place of an alpha-particle in a piece of apparatus and decide just what he would do in the circumstance.”

Keywords

Radon Concentration Photographic Plate Working Level Radon Level Radon Progeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Evans and C. Goodman, Determination of the thoron content of air and its bearing on lung cancer hazards of industry, J. Ind. Hyg. Toxicol. 22, 89–99 (1940).Google Scholar
  2. note by N. S. Stannard, Health Phys. 38, 919 (1980).Google Scholar
  3. 2.
    E. Lorenz, Radioactivity and lung cancer: A critical review of lung cancer in the miners of Schneeberg and Joachimsthal, J. Natl. Cancer Inst. 5, 1–15 (1944).Google Scholar
  4. Agricola, De Re Metallica (translated by Herbert and Lou Hoover), Dover Publications, New York (1950).Google Scholar
  5. B. M. Fried, Bronchogenic Carcinoma and Adenoma, The Williams and Wilkins Co., Baltimore (1948).Google Scholar
  6. 3.
    D. Wilson, Rutherford, Simple Genius, MIT Press, Cambridge, MA (1983).Google Scholar
  7. 4.
    M. Uhlig, Über den Schneeberger Lungenkrebs, Virchows Arch. Pathol. Anat. Physiol. 230, 76–98 (1921).CrossRefGoogle Scholar
  8. 5.
    A. Arnstein, Über der Sogenannten Schneeberger Lungenkrebs, Verh. Dtsch. Ges. Pathol. 16, 332–342 (1913).Google Scholar
  9. 6.
    A. Romer, The Restless Atom: The Awakening of Nuclear Physics, Dover Publications, Inc., New York (1982).Google Scholar
  10. A. Romer, ed., The Discovery of Radioactivity and Transmutation, Dover Publications, Inc., New York (1964).Google Scholar
  11. A. Romer, ed., Radiochemistry and the Discovery of Isotopes, Dover Publications, Inc., New York (1970);Encyclopaedia Britannica, 1911 edition, S. V. “radioactivity,” written by Ernest Rutherford, and the 1973 edition, S. V. “radioactivity,” written by Norman Feather, one of Rutherford’s students.Google Scholar
  12. E. Rutherford, Radioactive Substances and Their Radiations, Cambridge University Press, G. P. Putnam’s Sons, New York (1913); Marie Curie, Sc.D. thesis, published in The Chemical News 88, 85-86, 97-99, 134-135, 145-147, 159-160, 169-171, 175-177, 187-188, 199-201,211-212,223-224,235-236,247-249, 259-261, 271-272 (1903).Google Scholar
  13. L. Badash, Radioactivity in America, Growth and Decay of a Science, Johns Hopkins University Press, Baltimore (1979).Google Scholar
  14. 7.
    H. Becquerel, Sur les radiations émises par phosphorescence, C. R. Acad. Sci. 122, 420–421 (1896); a translation appears in the The Discovery of Radioactivity and Transmutation (A. Romer, ed.), Dover Publications, Inc., New York (1964).Google Scholar
  15. 8.
    H. Becquerel, Emission de radiations nouvelles par l’uranium métallique, C. R. Acad. Sci. 122, 1086–1088 (1896).Google Scholar
  16. 9.
    M. Curie, P. Curie, and M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pitchblende, C. R. Acad. Sci. 127, 1215–1217 (1898).Google Scholar
  17. 10.
    M. E. Weeks, Discovery of the Elements, 7th Ed., Journal of Chemical Education, Easton, PA (1968).Google Scholar
  18. L. F. Miller, Electroscopes and methods of radioactive measurements, Quarterly of the Colorado School of Mines 9, 1–15 (1914).Google Scholar
  19. 11.
    A. Romer, The Restless Atom, Dover Publications, Inc., New York (1982).Google Scholar
  20. 12.
    M. Curie, Recherches sur les substances radioactives, Ann. Chim. Phys. 30, 199–203 (1903).Google Scholar
  21. 13.
    E. Rutherford, A radioactive substance emitted from thorium compounds, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 49, 1–14 (1900).CrossRefGoogle Scholar
  22. 14.
    E. Rutherford, Radioactivity produced in substances by the action of thorium compounds, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 49, 161–192 (1900).CrossRefGoogle Scholar
  23. 15.
    A. S. Eve, Rutherford, Cambridge University Press, Cambridge (1939).Google Scholar
  24. N. Feather, Lord Rutherford, Blackie, Glasgow (1940).Google Scholar
  25. 16.
    P. Curie and A. Debierne, Sur la radio-activité et les gaz activés par le radium, C. R. Acad. Sci. 132, 768–770 (1901).Google Scholar
  26. 17.
    E. Dorn, Versuche Über Sekundarstrahlen und Radiumstrahlen, Abhandlungen der Naturforschenden Gesellschaft zu Halle 22, 37–43 (1900).Google Scholar
  27. 18.
    E. Rutherford and H. T. Brooks, The new gas from radium, Transactions of the Royal Society of Canada 7, 21–25 (1901).Google Scholar
  28. 19.
    E. Rutherford and F. Soddy, The radioactivity of thorium compounds, I. An investigation of the radioactive emanation, J. Chem. Soc, Transactions 81, 321–350 (1902).CrossRefGoogle Scholar
  29. 20.
    E. Rutherford, The succession of changes in radioactive bodies, Philosophical Transactions of the Royal Society of London 204A, 169–219 (1904).Google Scholar
  30. 21.
    J. Elster and H. Geitel, Über Eine Fernere der Naturlichen und der Durch Becquerelstrahlen Abnorm Leitend Gemachten Luft, Physik. Z. 2, 590–593 (1901).Google Scholar
  31. 22.
    E. Rutherford and F. Soddy, The radioactivity of thorium compounds, II. The cause and nature of radioactivity, J. Chem. Soc., Transactions 81, 837–860 (1902).CrossRefGoogle Scholar
  32. 23.
    T. J. Trenn, The Self Splitting Atom, Taylor and Francis, Ltd., London (1977).Google Scholar
  33. 24.
    A. Debierne, Sur les gaz produits par l’actinium, C. R. Acad. Sci. 141, 383–385 (1905).Google Scholar
  34. F. O. Giesel, Über den Emanationskorper (Emanium) Ber. 37, 1696–1699, 3963-3936 (1904).Google Scholar
  35. 25.
    E. Rutherford and F. Soddy, The radioactivity of uranium, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 5, 441–445 (1903).CrossRefGoogle Scholar
  36. E. Rutherford and F. Soddy, A comparative study of the radioactivity of radium and thorium, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 5, 445–457 (1903).CrossRefGoogle Scholar
  37. E. Rutherford and F. Soddy, Condensation of the radioactive emanations, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 5, 561–576 (1903).CrossRefGoogle Scholar
  38. 26.
    W. Ramsay and J. W. Collie, The Spectrum of radium, Proc. Roy. Soc. 73, 470–476 (1904).CrossRefGoogle Scholar
  39. 27.
    J. J. Thomson, Experiments on induced-radioactivity in air, and on the electrical conductivity produced in gases when they pass through water, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 4, 352–367 (1902).CrossRefGoogle Scholar
  40. 28.
    F. R. Von Traubenberg, Über die Gultigkeit des Daltonschen Resp. Henryschen Gesetzes Bei der Absorption der Emanation des Frieburger Leitungswassers und der Radiumemanation Durch Verschiedene Flussigkeiten, Physik. Z. 5, 130–134 (1904).Google Scholar
  41. 29.
    H. A. Bumstead and L. P. Wheeler, On the properties of a radioactive gas found in the soil and water near New Haven, Am. J. Sci. 167, 97–111 (1904).CrossRefGoogle Scholar
  42. 30.
    L. Badash, The suicidal success of radiochemistry, The British Journal for the History of Science 12, 245–256 (1979).CrossRefGoogle Scholar
  43. 31.
    K. Fajans, Über Eine Beziehung Zwischen der Art Einer Radioactiven Umwandlung und dem Elektrochemischen Verhalten der Betreffenden Radioelemente, Physik. Z. 14, 131-136 (1913); Die Stellung der Radioelemente im Periodischen System, ibid. 14, 136–142 (1913).Google Scholar
  44. 32.
    R. D. Evans, Determination of small quantities of radon and thoron, Phys. Rev. 39, 1014–1020 (1932).CrossRefGoogle Scholar
  45. 33.
    R. D. Evans, Apparatus for the determination minute quantities of radium, radon, and thorium in solids, liquids and gases, Rev. Sci. Instrum. 6, 99–112 (1935).CrossRefGoogle Scholar
  46. 34.
    L. F. Curtiss and F. J. Davis, A counting method for the determination of small amounts of radium and of radon, J. Nat. Bur. Stand. 31, 181–195 (1943).CrossRefGoogle Scholar
  47. 35.
    H. F. Lucas, Improved low-level alapha-scintillation counter for radon, Rev. Sci. Instrum. 28, 680–683 (1957).CrossRefGoogle Scholar
  48. 36.
    H. Jansen and P. Schultzer, Experimental investigations into internal radium emanation therapy, I. Emanatorium experiments with rats, Acta Radiol. 6, 631–646 (1926).CrossRefGoogle Scholar
  49. 37.
    P. Schultzer, Experimental investigations into internal radium emanation therapy, II. On the cause of the effect on rats of continuous emanation treatment, Acta Radiol. 6, 647–657 (1926).CrossRefGoogle Scholar
  50. 38.
    J. H. Harley, Sampling and measurement of airbone daughter products of radon, Nucleonics 11, 12–15 (1953).Google Scholar
  51. 39.
    A. Pirchan and H. Sikl, Cancer of the lung in the miners of Jachymov (Joachimsthal), report of cases observed in 1929–1930, Am. J. Cancer 16, 681–722 (1932).Google Scholar
  52. 40.
    E. Lorenz, Radioactivity and lung cancer: a critical review of lung cancer in the miners of Schneeberg and Joachimsthal, J. Natl. Cancer Inst. 5, 1–15 (1944).Google Scholar
  53. 41.
    F. B. Flynn, Dangers of internal radium therapy, Am. J. Phys. Therap. 9, 65–66 (1932).Google Scholar
  54. 42.
    H. Schlundt, W. McGavock, Jr., and M. Brown, Dangers in refining radioactive substances, J. Ind. Hyg. 13, 117–134 (1931).Google Scholar
  55. 43.
    T. H. Oddie, A method for the routine purification of radon, Br.J. Radiol. 10, 348–359 (1937).CrossRefGoogle Scholar
  56. 44.
    R. D. Evans, Inception of standards for internal emitters, radon and radium, Health Phys. 41, 437–448 (1981).PubMedGoogle Scholar
  57. 45.
    S. C. Lind, The Chemical Effects of Alpha Particles and Electrons, 2nd Ed., American Chemical Society Monograph Series, The Chemical Catalog Company, New York (1928).Google Scholar
  58. 46.
    M. C. McPherson, Time Bomb, E. P. Dutton, New York (1986).Google Scholar
  59. 47.
    C. T. Hess, private communication, Physics Department, University of Maine, Orono.Google Scholar
  60. 48.
    Michael Lafavore, Warning! This house contains radon, Readers Digest (June 1986); M. LaFavore, The radon report, New Shelter (January 1986).Google Scholar
  61. 49.
    H. L. Kusnetz, Radon daughters in mine atmospheres, a field method for determining concentrations, Am. Ind. Hyg. Assoc. Q. 17, 85–88 (1956).PubMedGoogle Scholar
  62. 50.
    E. Landa, Colorado radium: Mining, processing and usage in medicine, science and industry, Colorado School of Mines Quarterly, 82(2) (in press).Google Scholar
  63. 51.
    W. C. Stevenson, Preliminary clinical report on a new and economical method of radium therapy by means of emanation needles, Br. Med. J. 2, 9–10 (1914).PubMedCrossRefGoogle Scholar
  64. 52.
    N. Goldstein, Radon seed implants, Arch. Dermatol. 111, 757–759 (1975).PubMedCrossRefGoogle Scholar
  65. 53.
    E. P. Hendricks, B. D. Massey, E. F. Nation, C. A. Gallup, B. D. Massey, Jr., and J. W. Edwards, Radon in treatment of infiltrating carcinoma of urinary bladder, Urology 5, 465–469 (1975).PubMedCrossRefGoogle Scholar
  66. 54.
    B. S. Hilaris, J. H. Kim, and N. Tokita, Low energy radio-nuclides for permanent interstitial implantation, Am. J. Roentgenol. 126, 171–178 (1976).CrossRefGoogle Scholar
  67. 55.
    N. Beheshiti and N. Javid, Oral tissue and irradiation therapy, Isr.J. Dent. Med. 27, 31–35 (1978).Google Scholar
  68. 56.
    E. R. Landa, The first nuclear industry, Sci. Am. 247, 180–193 (1982).CrossRefGoogle Scholar
  69. 57.
    For more details on the use of radon in earthquake prediction see: Earthquake Prediction, Proceedings of the International Symposium on Earthquake Prediction, 1984, United Nations Educational, Scientific and Cultural Organization, 7 Place de Fontenoy, 75700 Paris, France (1984); June 10, 1980 issue of the J. Geophys. Res.; May 1981 issue of Geophys. Res. Lett.; and such journals as Earthquake Prediction Research and the Journal of Seismological Research..Google Scholar
  70. 58.
    B. S. Amin and Rama, A search for correlation between seismicity and radon anomaly in hot springs, Proc. Indian Acad. Sci. 91, 15–19 (1982).Google Scholar
  71. 59.
    S. C. Liu, J. R. McAfee, and R. J. Cicerone, Radon 222 and tropospheric vertical transport, J. Geophys. Res. 89, 7291–7297 (1984).CrossRefGoogle Scholar
  72. 60.
    C. Rangarajan, S. Gopalakrishnan, V. R. Chandrasekanan, and C. D. Eapen, The relative concentrations of radon daughter products in surface air and the significance of their ratios, J. Geophys. Res. 80, 845–848 (1975).CrossRefGoogle Scholar
  73. 61.
    G. Lambert, A. Buisson, J. Sanak, and B. Ardouin, Modification of the atmospheric polonium 210 to lead 210 ratio by volcanic emission, J. Geophys. Res. 84, 6980–6986 (1979).CrossRefGoogle Scholar
  74. 62.
    J. Sanak, G. Lambert, and B. Ardouin, Lead-210 in the atmosphere, in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 445–467, Technical Information Center, U. S. Department of Energy, Washington, DC (1980).Google Scholar
  75. 63.
    R. E. Larson and D. J. Bressan, Radon-222 as an indicator of continental air masses and air mass boundaries over ocean areas, in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 308–326, Technical Information Center, U. S. Department of Energy, Washington, DC (1980).Google Scholar
  76. 64.
    Rama, Using natural radon for delineating monsoon circulation, J. Geophys. Res. 75, 2227–2229 (1970).CrossRefGoogle Scholar
  77. 65.
    Encyclopedia of Science and Technology, Vol. 11, p. 373, McGraw-Hill, New York (1982).Google Scholar
  78. 66.
    R. L. Kathren, Radioactivity in the Environment: Sources, Distribution and Surveillance, Harwood Academic Publishers, New York (1984).Google Scholar
  79. 67.
    Nostrums and Quackery, Articles on the Nostrum Evil and Quackery, Reprinted from the Journal of the American Medical Association, Press of the American Medical Association, Chicago (1936).Google Scholar
  80. 68.
    R. L. Kathren, Historical development of radiation measurement and protection, in: Handbook of Radiation Measurement and Protection (A. Brodsky, ed.), CRC press, Boca Raton, FL (1978), pp. 13–52.Google Scholar
  81. 69.
    E. R. Landa, C. L. Miller, and R. F. Brich, Radioactive and nonradioactive solutes in drinking water from radon-charging devices (submitted for publication).Google Scholar
  82. 70.
    The Denver Radium Service, Radium Therapeutics and Methods of Administration For the General Practitioner, The Denver Radium Service, Denver, CO (1930).Google Scholar
  83. 71.
    J. Schubert and R. E. Lapp, Radiation: What It Is and How It Affects You, Viking Press (1957); E. W. Robinson, The Use of Radium in Consumer Products, U.S. Public Health Service Report MORP 68-5, Washington, DC (1968).Google Scholar
  84. 72.
    W. A. Jennings and S. Russ, Radon: Its Techniquue and Use, Published for the Middlesex Hospital Press by John Murray, Albemarle Street, London, W1 (1948).Google Scholar
  85. 73.
    Report of Council on Physical Medicine and Rehabilitation, Alphatron radon ointment not acceptable, J. Am. Med. Assoc. 140, 667 (1949).Google Scholar
  86. 74.
    New York Times, Sunday, November 25, 1984, p. 25.Google Scholar
  87. 75.
    W. V. Lewis, Arthritis and Radioactivity, A Story of Montana’s Free Enterprise Uranium-Radon Mine, The Christopher Publishing House, Boston (1955).Google Scholar
  88. 76.
    P. Curtis and E. Laborde, Sur la réactivité des gaz qui se dégagent de leau des sources thermales, C. R. Acad. Sci. 138, 1150–1153 (1904).Google Scholar
  89. 77.
    I. Uznov, R. Steinhausler, and E. Pohl, Carcinogenic risk of exposure to radon daughters associated with radon spas, Health Phys. 41, 807–813 (1981).CrossRefGoogle Scholar
  90. 78.
    W. Chruschielewski, T. Domanski, and W. Orzechowski, Concentrations of radon and its progeny in the rooms of Polish spas, Health Phys. 45, 421–424 (1983).CrossRefGoogle Scholar
  91. 79.
    S. Kimura and T. Komae, Applications of environmental radon-222 to some cases of water circulation, pp. 581–599, The Natural Environment III (T. F. Gesell and W. M. Lowder, eds.), Technical Information Center, U.S. Department of Energy, Washington, DC (1980).Google Scholar
  92. 80.
    A. B. Tanner, Physical and chemical controls of distribution of radium-226 and radon-222 in ground water near the Great Salt Lake, Utah, in The Natural Radiation Environment (J. A. S. Adams and W. M. Lowder, eds.), pp. 253–274, University of Chicago Press, Chicago (1964).Google Scholar
  93. 81.
    W. S. Broecker, An application of natural radon to problems of ocean circulation, in: Symposium on Diffusion in Ocean and Freshwater, Lamont Geological Observatory, Palisades, NY (1964).Google Scholar
  94. 82.
    A. B. Tanner, Radon migration in the ground: A supplementary review, in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 5–56, Technical Information Center, U.S. Department of Energy, Washington, DC (1980).Google Scholar
  95. 83.
    J. W. Card, K. Bell, G. M. Derham, and S. R. S. Shah, Radon decay product measurements in radiometric uranium exploration: Implications for petroleum exploration, Oil Gas J. 1985 (June 24) 114-118.Google Scholar
  96. 84.
    A. B. Tanner, Radon migration in the ground: A review, in: The Natural Radiation Environment (J. A. S. Adams and W. M. Lowder, eds.), pp. 161–190, University of Chicago Press, Chicago (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • C. Richard Cothern
    • 1
  1. 1.Office of the Administrator (A101F)U.S. Environmental Protection AgencyUSA

Personalised recommendations