Neutron Scattering from Macromolecules in Solution

  • Julia S. Higgins
  • Ann Maconnachie

Abstract

Neutron scattering spectroscopy1–4 differs from scattering of electromagnetic radiation (light or x-rays) in two major ways. The relatively larger neutron mass, which associates a sizeable momentum transfer with a scattering event, totally changes the relationship between energy and wave vector. This property, which means, for example, that neutrons have very much smaller energies than x-rays of the corresponding wavelength, allows exploration of a unique region of the spatial and time domains. It is, however, doubtful whether this property would have led, alone, to the widespread use by polymer scientists of neutron spectrometers, confined as these are to a few reactor centers scattered worldwide, if it were not for the second property—the neutron-nuclear interaction. Since the neutron is uncharged it interacts with the nucleus via nuclear forces. It carries a magnetic moment which can also interact with the nucleus and with the unpaired electrons in a molecule. This magnetic scattering is relatively weak and does not concern us when dealing with polymer solutions. The nuclear interaction is strong, but very short range, and thermal neutrons have wavelengths very much larger than nuclear dimensions. For an isolated stationary nucleus, scattering is, therefore, spherically symmetrical and energy independent and can be characterized by a single parameter, the scattering length b. Values of b vary randomly from nucleus to nucleus, from isotope to isotope, and even with the spin state of the scattering nucleus. In particular, the values for 1H and 2D are of opposite signs.

Keywords

Neutron Scattering Lower Critical Solution Temperature Dimethyl Siloxane Persistence Length Guide Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. T. M. Willis (ed.), Chemical Applications of Thermal Neutron Scattering, Oxford University Press, London (1973).Google Scholar
  2. 2.
    G. Kostorz (ed.), Treatise on Materials Science and Technology, Vol. 15, Neutron Scattering, Academic Press, New York (1979).Google Scholar
  3. 2a.
    J. S. Higgins, in Treatise on Materials Science and Technology(G. Kostorz, ed.), Vol. 15, pp. 381–422, Academic Press, New York (1979).Google Scholar
  4. 3.
    J. S. Higgins and R. S. Stein, J. Appl. Crystallogr. 11, 346–375 (1978).CrossRefGoogle Scholar
  5. 4.
    A. Maconnachie and R. W. Richards, Polymer 19, 739–762 (1978).CrossRefGoogle Scholar
  6. 5.
    B. Jacrot, Rep. Prog. Phys. 39, 911–953 (1976).CrossRefGoogle Scholar
  7. 6.
    H. Stuhrmann and A. Miller, J. Appl. Crystallogr. 11, 325–345 (1978).CrossRefGoogle Scholar
  8. 7.
    G. G. Kneale, J. P. Baldwin, and E. M. Bradbury, Q. Rev. Biophys. 10, 485–527, (1977).CrossRefGoogle Scholar
  9. 8.
    W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 17, 96–116 (1974).CrossRefGoogle Scholar
  10. 9.
    M. Birr, A. Heidemann, and B. Alefeld, Nucl. Instrum. Methods 95, 435–439 (1971).CrossRefGoogle Scholar
  11. 10.
    F. Mezei, Z. Phys. 255, 146–160 (1972).CrossRefGoogle Scholar
  12. 11.
    J. B. Hayter, in Neutron Diffraction(H. Dachs, ed.), Springer-Verlag, Berlin (1978).Google Scholar
  13. 12a.
    P. Dagleish, J. B. Hayter, and F. Mezei, in Neutron Spin-Echo, (F. Mezei, ed.), Physics 128, Springer-Verlag, Berlin (1980).Google Scholar
  14. 12b.
    J. B. Hayter in Neutron Spin-Echo(F. Mezei, ed.), Physics 128, Springer-Verlag, Berlin (1980).Google Scholar
  15. 13.
    J. S. Higgins, G. Allen, R. E. Ghosh, W. S. Howells, and B. Farnoux, Chem. Phys. Lett. 49, 197–202 (1977).CrossRefGoogle Scholar
  16. 14.
    G. C. Summerfield, in Spectroscopy in Biology and Chemistry, Neutron, X-ray and Laser(S. H. Chen and S. Yip, eds.), Chap. 10, Academic Press, New York (1974).Google Scholar
  17. 15.
    H. Benoit, J. Koberstein, and L. Leibler, Makromol. Chem. Suppl. 4, 85 (1981).CrossRefGoogle Scholar
  18. 16.
    B. H. Zimm, J. Chem. Phys. 16, 1093–1099 (1948).CrossRefGoogle Scholar
  19. 17.
    P. Debye, J. Phys. Colloid Chem. 51, 18–32 (1947).CrossRefGoogle Scholar
  20. 18.
    A. Guinier and G. Fournet, Small Angle Scattering of X-Rays, Wiley, New York (1955).Google Scholar
  21. 19.
    D. G. H. Ballard, M. G. Rayner, and J. Schelten, Polymer 17, 349–351 (1976).CrossRefGoogle Scholar
  22. 20.
    S. Heine, O. Kratky, and G. Porod, Makromol. Chem. 44, 682–726 (1961).CrossRefGoogle Scholar
  23. 21.
    J. S. Higgins, K. Dodgson, and J. A. Semlyen, Polymer 20, 553–558 (1979).CrossRefGoogle Scholar
  24. 22.
    P. Kratochvil, in Light Scattering from Polymer Solutions(M. B. Huglin, ed.), Academic Press, New York (1972).Google Scholar
  25. 23.
    A. K. Gupta, J. P. Cotton, E. Marchal, W. Burchard, and H. Benoit, Polymer 17, 363–366 (1976).CrossRefGoogle Scholar
  26. 24.
    S. F. Edwards, Proc. Phys. Soc. London 88, 265–280 (1966).CrossRefGoogle Scholar
  27. 25.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953).Google Scholar
  28. 26.
    P. G. de Gennes, Phys. Lett. A 38, 339–340 (1972).CrossRefGoogle Scholar
  29. 27.
    J. des Cloiseaux, J. Phys. (Orsay, France) 36, 281–291 (1975).CrossRefGoogle Scholar
  30. 28.
    P. G. de Gennes, J. Phys. Lett. (Orsay, France) 46, L55–L57 (1975).CrossRefGoogle Scholar
  31. 29a.
    M. Daoud and G. Jannink, J. Phys. (Orsay, France) 37, 973–979 (1976).CrossRefGoogle Scholar
  32. 29b.
    M. Daoud, J. Polym. Sci. Polym. Symp. 61, 305–311 (1977).CrossRefGoogle Scholar
  33. 30.
    S. F. Edwards, J. Phys. A. 8, 1670–1680 (1975).CrossRefGoogle Scholar
  34. 31.
    S. F. Edwards and E. F. Jeffers, J. Chem. Soc, Faraday Trans. 2 75, 1020–1029 (1979).CrossRefGoogle Scholar
  35. 32.
    C. Strazielle and H. Benoit, Macromolecules 8, 203–205 (1975).CrossRefGoogle Scholar
  36. 33.
    J. P. Cotton, M. Nierlich, F. Boue, M. Daoud, B. Farnoux, G. Jannink, R. Duplessix, and C. Picot, J. Chem. Phys. 65, 1101–1108 (1976).CrossRefGoogle Scholar
  37. 34a.
    R. W. Richards, A. Maconnachie, and G. Allen, Polymer 22, 147–152 (1981).CrossRefGoogle Scholar
  38. 34b.
    R. W. Richards, A. Maconnachie, and G. Allen, Polymer 22, 153–157 (1981).CrossRefGoogle Scholar
  39. 34c.
    R. W. Richards, A. Maconnachie, and G. Allen, Polymer 22, 158–162 (1981).CrossRefGoogle Scholar
  40. 35.
    B. Farnoux, M. Daoud, D. Decker, G. Jannink, and R. Ober, J. Phys. Lett. (Orsay, France) 36, L35–L39 (1975).CrossRefGoogle Scholar
  41. 36.
    B. Farnoux, F. Boue, J. P. Cotton, M. Daoud, G. Jannink, M. Nierlich, and P. G. de Gennes, J. Phys. (Orsay, France) 39, 77–86 (1978).CrossRefGoogle Scholar
  42. 37.
    M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot, and P. G. de Gennes, Macromolecules 8, 804–818 (1975).CrossRefGoogle Scholar
  43. 38.
    R. W. Richards, A. Maconnachie and G. Allen, Polymer 19, 266–270 (1978).CrossRefGoogle Scholar
  44. 39.
    D. W. Schaefer, J. F. Joanny, and P. Pincus, Macromolecules 13, 1280–1289 (1980).CrossRefGoogle Scholar
  45. 40.
    C. C. Han and B. Mozer, Macromolecules 10, 44–51 (1977).CrossRefGoogle Scholar
  46. 41.
    M. Leng and H. Benoit, J. Polym. Sci. 57, 263–273 (1962).CrossRefGoogle Scholar
  47. 42.
    M. Duval, R. Duplessix, C. Picot, D. Decker, P. Rempp, H. Benoit, J. P. Cotton, R. Ober, G. Jannink, and B. Farnoux, J. Polym. Sci. Part B 14, 588–589 (1976).Google Scholar
  48. 43.
    L. M. Ionescu, Ph. D. thesis, University of Strasbourg (1976).Google Scholar
  49. 44.
    I. N. Serdyuk and B. A. Dedorov,. Polym. Sci. Polym. Lett. Ed. 11, 645–649 (1973).CrossRefGoogle Scholar
  50. 45.
    P. G. de Gennes, J. Phys. (Orsay, France) 31, 235–238 (1970).CrossRefGoogle Scholar
  51. 46.
    R. Duplessix, J. P. Cotton, H. Benoit, and C. Picot, Polymer 20, 1181–1182 (1979).CrossRefGoogle Scholar
  52. 47.
    C. Tanford, Physical Chemistry of Macromolecules, Wiley, New York (1961).Google Scholar
  53. 48.
    M. Moan and C. Wolff, Polymer 16, 776–780 (1975).CrossRefGoogle Scholar
  54. 49.
    M. Moan and C. Wolff, Polymer 16, 781–784 (1975).CrossRefGoogle Scholar
  55. 50.
    J. P. Cotton and M. Moan, J. Phys. Lett. (Orsay, France) 37, L75–L77 (1976).CrossRefGoogle Scholar
  56. 51.
    M. Rinaudo and A. Domard, J. Polym. Sci. Polym. Lett. Ed. 15, 411–415 (1977).CrossRefGoogle Scholar
  57. 52.
    M. Nierlich, C. E. Williams, F. Boué, J. P. Cotton, M. Daoud, B. Farnoux, G. Jannink, C. Picot, M. Moan, C. Wolff, M. Rinaudo, and P. G. de Gennes, J. Phys.( Orsay, France) 40, 701–704 (1979).CrossRefGoogle Scholar
  58. 53.
    S. Lifson and A. Katchalsky, J. Polym. Sci. 13, 43–55 (1954).CrossRefGoogle Scholar
  59. 54.
    P. G. de Gennes, P. Pincus, R. M. Velasco, and F. Brochard, J. Phys.( Orsay, France) 37, 1461–1473 (1976).CrossRefGoogle Scholar
  60. 55.
    C. E. Williams, N. Nierlich, J. P. Cotton, G. Jannink, F. Boue, M. Daoud, B. Farnoux, C. Picot, P. G. de Gennes, M. Rinaudo, M. Moan, and C. Wolff, J. Polym. Sci., Polym. Lett. Ed. 17, 379–384 (1979).CrossRefGoogle Scholar
  61. 56.
    A. Z. Akcasu, G. C. Summerfield, S. N. Jahshan, C. C. Han, C. Y. Kim, and H. Yu, J. Polym. Sci. Polym. Phys. Ed. 18, 863–869 (1980).CrossRefGoogle Scholar
  62. 57.
    J. Hayter, G. Jannink, F. Brochard-Wyart, and P. G. de Gennes, J. Phys. Lett.( Orsay, France) 41, L451–L454 (1980).CrossRefGoogle Scholar
  63. 58.
    P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York (1979).Google Scholar
  64. 59.
    R. Pecora, J. Chem. Phys. 49, 1032–1035 (1968).CrossRefGoogle Scholar
  65. 60.
    P. G. de Gennes, Physics 3, 37–45 (1967).Google Scholar
  66. 61.
    E. du Bois Violette and P. G. de Gennes, Physics (N. Y.) 3, 181–198 (1967).Google Scholar
  67. 62.
    J. S. Higgins, R. E. Ghosh, W. S. Howells, and G. Allen, J. Chem. Soc. Faraday Trans.2 73, 40–47 (1977).CrossRefGoogle Scholar
  68. 63.
    A. Z. Akcasu, M. Benmouna, and C. C. Han, Polymer 21, 866–890 (1980).CrossRefGoogle Scholar
  69. 64.
    M. Benmouna and A. Z. Akcasu, Macromolecules 13, 409–414 (1980).CrossRefGoogle Scholar
  70. 65.
    M. Benmouna and A. Z. Akcasu, Macromolecules 11, 1187–1192 (1978).CrossRefGoogle Scholar
  71. 66.
    A. Z. Akcasu and M. Benmouna, Macromolecules 11, 1193–1198 (1978).CrossRefGoogle Scholar
  72. 67.
    P. G. de Gennes, Macromolecules 9, 594–598 (1976).CrossRefGoogle Scholar
  73. 68.
    G. Allen, R. Ghosh, J. S. Higgins, J. P. Cotton, B. Farnoux, G. Jannink, and G. Weill, Chem. Phys. Lett. 38, 577–581 (1976).CrossRefGoogle Scholar
  74. 69.
    A.Z. Akcasu and J. S. Higgins, J. Polym. Sci. Polym. Phys. Ed. 15, 1745–1756 (1977).CrossRefGoogle Scholar
  75. 70.
    L. K. Nicholson, J. S. Higgins, and J. B. Hayter, Macromolecules 14, 836–843 (1981).CrossRefGoogle Scholar
  76. 71.
    D. Richter, J. B. Hayter, F. Mezei, and B. Ewen, Phys. Rev. Lett. 41, 1484–1487 (1978).CrossRefGoogle Scholar
  77. 72.
    K. Osaki and J. L. Schragg, Polym. J. 2, 541–549 (1971).CrossRefGoogle Scholar
  78. 73.
    G. Allegra and F. Ganazzoli,. Chem. Phys. 74, 1310–1320 (1981).Google Scholar
  79. 74.
    J. S. Higgins, L. K. Nicholson, and J. B. Hayter, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 22, 86–88 (1981).Google Scholar
  80. 25.
    J. S. Higgins, K. Dodgson, and J. A. Semlyen, Polymer 20, 553–558 (1979).CrossRefGoogle Scholar
  81. 76.
    A. Z. Akcasu and C. C. Han, Macromolecules 12, 276–280 (1979).CrossRefGoogle Scholar
  82. 77.
    B. Ewen, D. Richter, and B. Lehnen, Macromolecules 13, 876–880 (1980).CrossRefGoogle Scholar
  83. 78.
    D. Richter, B. Ewen, and J. B. Hayter, Phys. Rev. Lett. 45, 2121–2125 (1980).CrossRefGoogle Scholar
  84. 79.
    C. Reiss and H. Benoit, C. R. Hebd. Seances Acad. Sci. Ser. C. 253, 268–270 (1961).Google Scholar
  85. 80.
    J. H. Dunbar, A. M. North, R. A. Pethrick, and P. B. Teik, Polymer 21, 764–768 (1980).CrossRefGoogle Scholar
  86. 81.
    J. B. Hayter and J. Penfold, J. Chem. Soc. Faraday Trans. 1 77, 1851 (1981).CrossRefGoogle Scholar
  87. 82.
    R. Duplessix, International Union of Pure and Applied Chemistry, Macromolecular Symposium, Mainz (1979), abstracts, p. 870.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Julia S. Higgins
    • 1
  • Ann Maconnachie
    • 1
  1. 1.Department of Chemical Engineering and Chemical TechnologyImperial CollegeLondonUK

Personalised recommendations