Mössbauer Spectroscopy of Magnetic Systems

  • T. E. Cranshaw
  • G. Longworth
Chapter
Part of the Modern Inorganic Chemistry book series (MICE, volume 1)

Abstract

Mössbauer spectroscopy is the spectroscopy of transitions between an excited nuclear level and the ground state, and is practicable in certain favorable nuclides, mainly 57Fe, 119Sn, 121Sb, 197Au, etc. Since at least one of the levels must have nonzero spin, there is always, in principle, the possibility of observing magnetic hyperfine structure, the nuclear Zeeman effect. It is the purpose of this chapter to show how such magnetic interactions can be studied by Mössbauer spectroscopy and valuable information derived. We confine our attention mainly to 57Fe, and start with a brief account of the magnetic interaction with the nucleus, following in general the treatment of Wertheim.1

Keywords

Mossbauer Spectroscopy Magnetic System Electric Field Gradient Hyperfine Field Easy Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.K. Wertheim, Mössbauer Effect, Academic Press, New York, 1964.Google Scholar
  2. 2.
    W. Kündig, Nucl. Instrum. Methods 48, 219 (1967).CrossRefGoogle Scholar
  3. 3.
    G. Lang and B.W. Dale, Nucl. Instrum. Methods 116, 567 (1974).CrossRefGoogle Scholar
  4. 4.
    S.S. Hanna, J. Heberle, C. Littlejohn, G.J. Perlow, R.S. Preston, and D.H. Vincent, Phys. Rev. Lett. 4, 177 (1960).CrossRefGoogle Scholar
  5. 5.
    R.M. Housley, Mössbauer Effect Methodology, I.J. Gruvermann, ed., Plennum Press, New York, 1970, Vol. 5, p. 109.Google Scholar
  6. 6.
    T.M. Liu and R.S. Preston, Mössbauer Effect Methodology, I.J. Gruvermann, ed., Plenum Press, New York, 1974, Vol. 9, p. 205.Google Scholar
  7. 7.
    G.K. Shenoy, J.M. Friedt, H. Maletta, and S.L. Ruby, Mössbauer Effect Methodology, LJ. Gruvermann, ed. Plenum Press, 1974, Vol. 9, p. 277.Google Scholar
  8. 8.
    T.E. Cranshaw, J. Phys. E 7, 182 (1974).Google Scholar
  9. 9.
    W. Marshall and C.E. Johnson, J Phys. (Paris) 23, 733 (1962).Google Scholar
  10. 10.
    V.I. Goldanskii and E.F. Makarov, Chemical Applications of Mössbauer Spectroscopy, V. I. Goldanskii and R. Herber, eds. Academic Press, New York, 1968.Google Scholar
  11. 11.
    R.M. Sternheimer, Phys. Rev. 86, 316 (1962).Google Scholar
  12. 12.
    Cheng-Jyi Song, J. Trooster, and N. Benczer-Koller, Phys. Rev. B 9, 3854 (1974).CrossRefGoogle Scholar
  13. 13.
    I. Nowik and H.H. Wickman, Phys. Rev. 140 A869 (1965).Google Scholar
  14. 14.
    I. Nowik and E.R. Bauminger, MEDI-1975, J.G. Stevens and V.E. Stevens, eds., Plenum Press, New York, 1976, p. 407.Google Scholar
  15. 15.
    H.H. Wickman, Mössbauer Effect Methodology, I.J. Gruvermann, ed. Plenum Press, New York, 1966, p. 39.Google Scholar
  16. 16.
    C.E. Johnson, R. Rickards, and H.A.O. Hill, J. Chem. Phys. 50, 2594 (1969).CrossRefGoogle Scholar
  17. 17.
    L.I. Dormann, Rev. Phys. Appl. 16, 275 (1981).CrossRefGoogle Scholar
  18. 18.
    S. Mürup, J.A. Dumesic, and H. TopsOe, Applications of Mössbauer Spectroscopy, Vol. II, R.L. Cohen, ed., Academic Press, New York, 1980, p. 1.Google Scholar
  19. 19.
    Z. Mathalone, M. Ron, and A. Biran, Solid State Commun. 8, 333 (1970).CrossRefGoogle Scholar
  20. 20.
    P.J. Picone, K. Haneda, and A.H. Morrish, J. Phys. C 15, 317 (1982).CrossRefGoogle Scholar
  21. 21.
    P. Roggwiller and W. Kundig, Solid State Commun. 12, 901 (1973).CrossRefGoogle Scholar
  22. 22.
    R.B. Frankel, Mössbauer Effect Methodology,[I.. Gruvermann, ed., Plenum Press, 1974, Vol. 9, p. 151.Google Scholar
  23. 23.
    J. Chappert, J Phys. (Paris) Colloq. C 6, 71 (1974).Google Scholar
  24. 24.
    C.R. Abeledo, R.B. Frankel, A. Misetich, and N.A. Blum, J. Appt Phys. 42, 1723 (1971).CrossRefGoogle Scholar
  25. 25.
    G.W. Durbin, C.E. Johnson, and M.F. Thomas, J. Phys. C. Solid State Phys. 8, 3051 (1975).CrossRefGoogle Scholar
  26. 26.
    E.J.W. Verwey, Nature 144, 327 (1939).Google Scholar
  27. 27.
    E.J.W. Verwey and P.W. Haayman, Physica 8, 979 (1941).CrossRefGoogle Scholar
  28. 28.
    E.J.W. Verwey, P.W. Haayman, and F.C. Romeijn, J. Chem. Phys. 15, 181 (1947).CrossRefGoogle Scholar
  29. 29.
    W.C. Hamilton, Phys. Rev. 110, 1050 (1958).CrossRefGoogle Scholar
  30. 30.
    B.J. Evans, AIP Conference Proceedings on Magnetism and Magnetic Materials, No, 24, H.C. Wolfe, ed., American Institute of Physics, New York, 1975, p. 73.Google Scholar
  31. 31.
    W. Kündig and R.S. Hargrove, Solid State Commun. 7, 223 (1961).CrossRefGoogle Scholar
  32. 32.
    A.M. van Diepen, Phys. Lett. 57A, 354 (1976).CrossRefGoogle Scholar
  33. 33.
    A.M. van Diepen, Physica 86–88B 955 (1977).Google Scholar
  34. 34.
    L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, and S. Bjarman, Hyperfine Interactions 5, 201 (1978).CrossRefGoogle Scholar
  35. 35.
    R.S. Hargrove and W. Kundig, Solid State Common. 8, 303 (1970).CrossRefGoogle Scholar
  36. 36.
    M. Rubinstein and D.W. Forester, Solid State Commun. 9, 1675 (1971).CrossRefGoogle Scholar
  37. 37.
    F. van der Woude, Phys. Status Solidi 17, 417 (1966).CrossRefGoogle Scholar
  38. 38.
    F.J. Morin. Phys. Rev. 78, 819 (1950).Google Scholar
  39. 39.
    K. Ono and A. Ito, J. Phys. Soc. Jpn 17, 1012 (1962).CrossRefGoogle Scholar
  40. 40.
    P. lmbert and A. Gerard, C.R. Acad. Sci. (Paris) 257, 1054 (1963).Google Scholar
  41. 41.
    N.A. Blum and R.B. Frankel, Bull. Am. Phys. Soc. 12, 23 (1967).Google Scholar
  42. 42.
    D.J. Simkin and R.A. Bernheim, Phys. Rev. 153, 621 (1967).CrossRefGoogle Scholar
  43. 43.
    G. Cinader, P.J. Flanders, and S. Shtrikman, Phys. Rev. 162, 419 (1967).CrossRefGoogle Scholar
  44. 44.
    A.N. Salvgin, V.A. Povitskii, M.V. Filin, V.M. Erkin, and V.V. Dudoladov, Soy. Phys. Solid State 16, 792 (1974).Google Scholar
  45. 45.
    T. Ruskov, T. Tomov, and S. Georgiev, Phys. Status Solidi. A 37, 295 (1976).CrossRefGoogle Scholar
  46. 46.
    L. Tobler, W. Kündig, and I. Savic, Hyperfine Interactions 10, 1017 (1981).CrossRefGoogle Scholar
  47. 47.
    K. Ruegg, C. Boekema, A. Denison, W. Hofmann, and W. Kündig, J. Magn. Magn. Mat. 15, 669 (1980).CrossRefGoogle Scholar
  48. 48.
    P.D. Battle, A.K. Cheetham, C. Gleitzer, W.A. Harrison, G.J. Long, and G. Longworth, J. Phys. C. Solid State 15, L919 (1982).CrossRefGoogle Scholar
  49. 49.
    G.J. Long, G. Longworth, P. Battle, A.K. Cheetham, R.V. Thundathil, and D. Beveridge, Inorg. Chem. 18, 629 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • T. E. Cranshaw
    • 1
  • G. Longworth
    • 1
  1. 1.Nuclear Physics DivisionAtomic Energy Research EstablishmentHarwell, Didcot, OxfordshireEngland

Personalised recommendations