The Electric Field Gradient and the Quadrupole Interaction

  • Hartmut Spiering
Chapter
Part of the Modern Inorganic Chemistry book series (MICE, volume 1)

Abstract

The Mössbauer effect has become a popular method in analytical chemistry. In contrast to other techniques such as x-ray spectroscopy, NMR, EPR, and MCD where highly sophisticated evaluation procedures are applied to obtain reliable information on the chemical compound, the Mössbauer effect is generally used on a low level concerning the evaluation of quadrupole split spectra. This procedure on a low level is favored by the structure of the spectra especially the simple doublet of the 3/2 → 1/2 nuclear transitions in paramagnetic and diamagnetic compounds. The separation of the two absorption lines, the quadrupole splitting ΔE Q and the center of the two lines, the isomer shift, are easily derived from the spectra. To obtain these two parameters, which comprise already a lot of chemical information, there is no need of a complete theory. Further information from the quadrupole split spectra is given by the sign and the asymmetry of the electric field gradient tensor at the nucleus and its orientation with respect to the crystal axes. The evaluation of these parameters from the Mössbauer spectra requires already a relatively complicated theory which is only available in original publications.1–3 The situation is made even more difficult by the matter of fact that in most cases the tensor components cannot be uniquely measured; rather, only interrelations between them are obtained from the measured quantities of the spectra.4 A further complication is introduced by an anisotropic vibrational amplitude of the Mössbauer atom which gives rise to an anisotropic Debye—Waller factor. These points prevented a general application of all possibilities of the Mössbauer effect, although very nice work had been done on sodium nitroprusside5 and on the heme group of deoxymyoglobin6 and on CO-liganded myoglobin7 where the difficulties concerning the preparation of sufficiently large single crystals enriched in 57Fe had to be overcome. On the other hand the calculation of the electric field gradient in molecular crystals by molecular orbital (MO) approaches has been improved very much,8 so that a comparison with detailed experimental data has become desirable. It seems therefore to be justified to present in detail the mathematical tool for the evaluation of the quadrupole split Mössbauer spectra.

Keywords

Electric Field Gradient Texture Component Quadrupole Interaction Intensity Matrix Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Frauenfelder, D.E. Nagle, R.D. Taylor, D.R.F. Cochran, and W.M. Visscher, Phys. Rev. 126, 1065 (1962).CrossRefGoogle Scholar
  2. 2.
    M. Blume and O.C. Kistner, Phys. Rev. 171, 417 (1968).CrossRefGoogle Scholar
  3. 3.
    R.M. Housley, R.W. Grant, and U. Gonser, Phys. Rev. 178, 514 (1969).CrossRefGoogle Scholar
  4. 4.
    R. Zimmermann, Nucl. Instrum. Methods 128, 537 (1975).CrossRefGoogle Scholar
  5. 5.
    R.W. Grant, R.M. Housley, and U. Gonser, Phys. Rev. 178, 523 (1969).CrossRefGoogle Scholar
  6. 6.
    Y. Maeda, T. Harami, A. Trautwein, and U. Gonser, Z. Naturforsch. 31b, 487 (1976).Google Scholar
  7. 7.
    F. Parak, U.F. Thomanek, D. Bade, and B. Wintergerst, Z. Naturforsch. 32c, 507 (1977).Google Scholar
  8. 8.
    M. Grodzicki, S. Lauer, and A.X. Trautwein, in Mössbauer Spectroscopy and its Chemical Applications, J.G. Stevens and G.K. Shenoy eds., Advances in Chemistry Series No. 194, American Chemical Society, Washington, D.C., 1981, p. 3.Google Scholar
  9. 9.
    R. Zimmerman, Chem. Phys. Lett. 34, 416 (1975).CrossRefGoogle Scholar
  10. 10.
    Alumuddin, A. Lal, and K. Rama Reddy, Nuovo Cimento 32B, 389 (1976).Google Scholar
  11. 11.
    H. Spiering, Hyperfine Interactions 3, 213 (1977).CrossRefGoogle Scholar
  12. 12.
    R.M. Steffen and K. Alder, in The Electrotnagnetic Interaction in Nuclear Spectroscopy, W.D. Hamilton, ed., North-Holland, Amsterdam, 1975.Google Scholar
  13. 13.
    U. Gonser and H.D. Pfannes, J. Phys. (Paris) 35, C6–113 (1974).CrossRefGoogle Scholar
  14. 14.
    H.D. Pfannes and H. Fischer, Appl. Phys. 13, 317 (1977).CrossRefGoogle Scholar
  15. 15.
    H. Spiering and H. Vogel, J. Phys. (Paris) 40, C2–50 (1979).CrossRefGoogle Scholar
  16. 16.
    M. Rots, R. Coussement, J. Claes, and L. Hermans, Hyperfine Interactions 11, 185 (1981).CrossRefGoogle Scholar
  17. 17.
    V.I. Goldanskii, G.M. Gorodinskii, S.V. Karyagin, L.A. Korytko, L.M. Krizhanskii, E.F. Makarov, I.P. Suzdalev, and V.V. Khrapov, Proc. Acad. Sci. USSR, Phys. Chem. Sect. 147, 766 (1963).Google Scholar
  18. 18.
    S.V. Karyagin, Dokl. Akad. Nauk. SSSR 148, 1102 (1963).Google Scholar
  19. 19.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.Google Scholar
  20. 20.
    P.G.L. Williams and G.M. Bancroft, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Plenum Press, New York, 1971, Vol. 7, p. 39.Google Scholar
  21. 21.
    P. Zory, Phys. Rev. 140, A1401 (1965).CrossRefGoogle Scholar
  22. 22.
    S. Kareem, M. Ali, Alumuddin, and R.K. Tyagi, Proc. of the International Conference on the Application of the Mössbauer Effect, Jaipur, India, 1981, p. 583.Google Scholar
  23. 23.
    C.L. Chein, S. De Benedetti, and F. de S. Barros, Phys. Rev. B 10, 3913 (1974).CrossRefGoogle Scholar
  24. 24.
    P. Imbert, Phys. Lett. 8, 95 (1964).CrossRefGoogle Scholar
  25. 25.
    R.M. Housley and U. Gonser, Phys. Rev. 171, 480 (1968).CrossRefGoogle Scholar
  26. 26.
    U. Gonser and H. Fischer, in Mössbauer Spectroscopy II, U. Gonser, ed., Springer-Verlag, Berlin, 1981, p. 49.CrossRefGoogle Scholar
  27. 27.
    U. Fano, Rev. Mod. Phys. 29, 74 (1957).CrossRefGoogle Scholar
  28. 28.
    M.E. Rose, Elementary Theory Of Angular Momentum, John Wiley, New York, 1957.Google Scholar
  29. 29.
    M. Lax, Rev. Mod. Phys. 126, 1045 (1962).CrossRefGoogle Scholar
  30. 30.
    G.T. Trammell, Phys. Rev. 126, 1045 (1962).Google Scholar
  31. 31.
    G.T. Trammell and J.P. Hannon, Phys. Rev. 180, 337 (1969).CrossRefGoogle Scholar
  32. 32.
    A.M. Afanas’ev and Y. Kagan, Phys. Lett. 31a, 38 (1970).CrossRefGoogle Scholar
  33. 33.
    D.L. Nagy, Appl. Phys. 17, 269 (1978).Google Scholar
  34. 34.
    H. Prosser, F.E. Wagner, G. Wortmann, and G.M. Kalvius, Hyperfine Interactions 1, 25 (1975).CrossRefGoogle Scholar
  35. 35.
    J.M. Greneche and F. Varret, J. Phys. (Paris) Lett. 43, L233 (1982).CrossRefGoogle Scholar
  36. 36.
    T. Ericson and R. Wappling, J. Phys. (Paris) 37, C6–719 (1976).CrossRefGoogle Scholar
  37. 37.
    U. Gonser, J. Phys. Chem. 66, 564 (1962).CrossRefGoogle Scholar
  38. 38.
    R. Chandra and T. Ericsson, Hypetfine Interactions 7, 229 (1979).CrossRefGoogle Scholar
  39. 39.
    C.L. Chien and A.W. Sleight, Phys. Rev. B 18, 2031 (1978).CrossRefGoogle Scholar
  40. 40.
    V.I. Goldanskii and E.F. Makarov, in Chemical Applications of Mössbauer Spectroscopy, V.I. Goldanskii and R.H. Herber, eds., p. 105, Academic Press, New York, 1968.Google Scholar
  41. 41.
    E.R. Bauminger, A. Diamant, 1. Feiner, 1. Nowik, and S. Ofer, Phys. Lett. 50A, 321 (1974).CrossRefGoogle Scholar
  42. 42.
    H. Armon, E.R. Bauminger, A. Diamant, I. Nowik, and S. Ofer, Solid State Commun. 15, 543 (1974).CrossRefGoogle Scholar
  43. 43.
    M.O. Faltens and D.A. Shirley, J. Chem. Phys. 53, 4249 (1970).CrossRefGoogle Scholar
  44. 44.
    H.D. Bartunik, W. Potzel, R.L. Mössbauer, and G. Kaindl, Z. Phys. 240, 1 (1970).CrossRefGoogle Scholar
  45. 45.
    J. Danon, in Mössbauer Spectroscopy and its Applications, IAEA, Vienna, 1972.Google Scholar
  46. 46.
    A. Rosencwaig and D.T. Cromer, Acta Crystallogr. 12, 704 (1959).Google Scholar
  47. 47.
    M.T. Hirvonen, A.P. Jauho, T.E. Katila, J.A. Pohjonen, and K.J. Riski, J. Phys. (Paris) 37, C6–501 (1976).CrossRefGoogle Scholar
  48. 48.
    W. Keune, S.K. Date, I. Dèzsi, U. Gonser, J. Appl. Phys. 46, 3914 (1975).CrossRefGoogle Scholar
  49. 49.
    G.A. Bykow, P.Z. Hien, Soy. Phys. JETP 16, 646 (1963).Google Scholar
  50. 50.
    H. Spiering and H. Vogel, Hyperfine Interactions 3, 221 (1977).CrossRefGoogle Scholar
  51. 51.
    A.J. Stone, Nucl. Instrum. Methods 107, 285 (1973).Google Scholar
  52. 52.
    R.M. Housley, U. Gonser, and R.W. Grant, Phys. Rev. Lett. 20, 1279 (1968).CrossRefGoogle Scholar
  53. 53.
    M.C.D. Ure and P.A. Flinn, in Mössbauer Effect Methodology, 1.J. Gruverman, ed., Plenum Press New York, 1971, Vol. 7.Google Scholar
  54. 54.
    R. Zimmermann and R. Doerfler, J. Phys. (Paris) 41, C1–107 (1980).Google Scholar
  55. 55.
    T.C. Gibb, J. Phys. C, Solid State Phys. 7, 1001 (1974).Google Scholar
  56. 56.
    V.I. Goldanskii, E.F. Makarov, I.P. Suzdalev, and 1.A. Vinogradov, Soy. Phys. JETP 31, 407 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Hartmut Spiering
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieJohannes-Gutenberg-UniversitätMainzWest Germany

Personalised recommendations