Mössbauer Spectroscopy in Heterogeneous Catalysis

  • Frank J. Berry
Chapter
Part of the Modern Inorganic Chemistry book series (MICE, volume 1)

Abstract

The ability of Mössbauer spectroscopy to examine directly the electronic environment of nuclei in authentic catalysts under realistic conditions has conferred a special power to this technique when used for the examination of solid catalysts. Although this particular application has been known for some time it is only relatively recently that Mössbauer spectroscopy, in both conventional and novel modes of operation, has been developed as an important research technique in the field of catalysis.

Keywords

Mossbauer Spectroscopy Quadrupole Splitting Heterogeneous Catalysis Mossbauer Spectrum Mixed Oxide Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Dumesic and H. Topsoe, in Advances in Catalysis, D.D. Eley, H. Pines, and P.B. Weisz, eds., Vol. 26, p. 121, Academic Press, New York, 1976.Google Scholar
  2. 2.
    W.N. Delgass and M. Boudart, in Catalysis Reviews, H. Heinemann, ed., Vol. 2, p. 129, M. Dekker, New York, 1968.Google Scholar
  3. 3.
    R.H. Herber and Y. Hazony, in Physical Methods of Chemistry, A. Weissberger and B.W. Rossiter, Vol. 1, p. 215, Wiley (Interscience), New York, 1972.Google Scholar
  4. 4.
    V.I. Goldanskii and I.P. Suzdalev, Russ. Chem. Rev. 39, 609 (1970).Google Scholar
  5. 5.
    M.C. Hobson, Adv. Colloid Interface Sci. 3, 1 (1971).Google Scholar
  6. 6.
    H.M. Gager and M.C. Hobson, in Catalysis Reviews, H. Heinemann and J.J. Carberry, eds., Vol. 11, p. 117, M. Dekker, New York, 1975.Google Scholar
  7. 7.
    M.C. Hobson, Surf. Memb. Sci. 5, 1 (1972).Google Scholar
  8. 8.
    M.C. Hobson, in Characterization of Solid Surfaces, P.F. Kane and G.B. Larrabee, eds., p. 379, Plenum, New York, 1974.Google Scholar
  9. 9.
    W.N. Delgass, G.L. Haller, R. Kellerman, and J.H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Academic Press, New York, 1979.Google Scholar
  10. W. Jones, in Characterisation of Catalysts, J.M. Thomas and R.M. Lambert, eds., p. 114, J. Wiley, Chichester, 1980.Google Scholar
  11. 11.
    N. Benczer-Koller and R.H. Herber, in Chemical Applications of Mössbauer Spectroscopy, V.I. Goldanski and R.H. Herber, eds., Academic Press, New York, 1968.Google Scholar
  12. 12.
    R.L. Cohen and G.K. Wertheim, Methods Exp. Phys. 11, 307 (1974).Google Scholar
  13. 13.
    W.N. Delgass, R.L. Garten, and M. Boudart, J. Chem. Phys. 50, 4603 (1969).Google Scholar
  14. 14.
    H. Topsoe, J.A. Dumesic, and M. Boudart, J. Catal. 28, 477 (1973).Google Scholar
  15. 15.
    H. Topsoe and M. Boudart, J. Catal. 31, 346 (1973).Google Scholar
  16. 16.
    M. Boudart, A. Delbouille, J.A. Dumesic, S. Khammouma, and H. Topsoe, J. Catal. 37, 486 (1975).Google Scholar
  17. 17.
    W.N. Delgas, L.Y. Chen, and G. Vogel, Rev. Sci. Instrum. 47, 136 (1976).Google Scholar
  18. 18.
    Yu V. Maksimov, I.P. Suzdalev, V.I. Goldanskii, O.V. Krylov, L. Ya Margolis, and A.E. Nechitailo, Chem. Phys. Lett. 34, 172 (1975).Google Scholar
  19. 19.
    J.A. Dumesic, Yu V. Maksimov, and I.P. Suzdalev, in Mössbauer Effect Methodology, I.J. Gruverman and C.W. Seidel, eds., Vol. 10, p. 31, Plenum Press, New York, 1976.Google Scholar
  20. 20.
    F.J. Berry, in Advances in Inorganic Chemistry and Radiochemistry, H.J. Emeleus and A.G. Sharpe, eds., Vol. 21, p. 255, Academic Press, New York, 1978.Google Scholar
  21. 21.
    P.N. Ross and W.N. Delgass, J. Catal. 33, 219 (1974).Google Scholar
  22. 22.
    R.L. Garten, J. Catal. 43, 18 (1976).Google Scholar
  23. 23.
    M. Kalvius, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Vol. 1, p. 163, Plenum Press, New York, 1965.Google Scholar
  24. 24.
    G.M. Kalvius, T.E. Katila, and O.V. Lounasmaa, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Vol. 5, p. 231, Plenum Press, New York, 1969.Google Scholar
  25. 25.
    B.S. Clausen, S. Morup, P. Nielson, N. Thrane, and H. Topsoe, J. Phys. E. 12, 439 (1979).Google Scholar
  26. 26.
    W. Wiedemann, W.A. Mundt, and D. Kullman, Cryogenics 5, 94 (1965).Google Scholar
  27. 27.
    J.J. Spijkerman, in An Introduction to Mössbauer Spectroscopy, L. May, ed., p. 23, Plenum Press, New York, 1971.Google Scholar
  28. 28.
    C.A. Bartholomew and M. Boudart, J. Catal. 29, 278 (1973).Google Scholar
  29. 29.
    P. Boolchard, B.G. Triplett, S.S. Hanna, and J.P. de Neufville, in Mössbauer Effect Methodology, I.J. Gruverman, C.W. Seidel, and D.K. Dieterly, eds., Vol. 9, p. 53, Plenum Press, New York, 1974.Google Scholar
  30. 30.
    J. Chappert, J. Phys. (Paris) Colloq. 35, C6–71 (1974).Google Scholar
  31. 31.
    C.A. Clausen and M.L. Good, J. Catal. 38, 92 (1975).Google Scholar
  32. 32.
    F.J. Berry and A.G. Maddock, Inorg. Chim. Acta 37, 255 (1979).Google Scholar
  33. 33.
    J. Fenger, Nucl. Instrum. Methods 69, 268 (1969).Google Scholar
  34. 34.
    M.J. Tricker, in Surface and Defect Properties of Solids, M.W. Roberts and J.M. Thomas, eds., Vol. 6, p. 106, The Chemical Society, London, 1977.Google Scholar
  35. 35.
    F.J. Berry, Transition Met. Chem. 4, 209 (1979).Google Scholar
  36. 36.
    K.R. Swanson and J.J. Spijkerman, J. Appl. Phys. 41, 3155 (1970).Google Scholar
  37. 37.
    J.M. Thomas, M.J. Tricker, and A.P. Winterbottom, J. Chem. Soc. (Faraday 1) 71, 1708 (1975).Google Scholar
  38. 38.
    Z.W. Bonchev, A. Jordanov, and A. Minkova, Nucl. Instrum. Methods 70, 29 (1969).Google Scholar
  39. 39.
    Z.W. Bonchev, A. Jordanov, and A. Minkova, in Proc. Conf. Appl. Mössbauer Effect 1969, p. 333, Akad. Kiado, Budapest, 1969.Google Scholar
  40. 40.
    Z.W. Bonchev, A. Jordanov, and A. Minkova, Nucl. Instrum. Methods 70, 36 (1969).Google Scholar
  41. 41.
    W. Meisel, Z. Chem. 11, 238 (1971).Google Scholar
  42. 42.
    B.J. Bowles and T.E. Cranshaw, Phys. Lett. 17, 258 (1971).Google Scholar
  43. 43.
    M.N. Varma and R.W. Hoffman, J. Appl. Phys. 42, 1727 (1971).Google Scholar
  44. 44.
    M.N. Varma and R.W. Hoffman, J. Vac. Sci. Technol. 9, 177 (1972).Google Scholar
  45. 45.
    J.W. Burton, H. Frauenfelder, and R.P. Godwin, in Applications of the Mössbauer Effect in Chemistry and Solid State Physics, p. 73, IAEA, Vienna, 1966.Google Scholar
  46. 46.
    J.W. Burton and R.P. Godwin, Phys. Rev. 158, 218 (1967).Google Scholar
  47. 47.
    B.S. Clausen, H. Topsoe, S. Morup, and R. Candia, J. Phys. (Paris) 37, C6–249 (1976).Google Scholar
  48. 48.
    G.K. Wertheim, Ace. Chem. Res. 4, 373 (1971).Google Scholar
  49. 49.
    I. Dézsi and B. Molnar, Nucl. Instrum. Methods 54, 105 (1967).Google Scholar
  50. 50.
    E.R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Feiner, and I. Mayer, Phys. Rev. Lett. 30, 1053 (1977).Google Scholar
  51. 51.
    C. Song and J.G. Mullen, Phys. Rev. B. 14, 2761 (1976).Google Scholar
  52. 52.
    K.S. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1960).Google Scholar
  53. 53.
    I.P. Suzdalev, A.S. Plachinda, and E.F. Markov, Soy. Phys.-JETP. 26, 897 (1968).Google Scholar
  54. 54.
    O.C. Kistner and A.W. Sunyar, Phys. Rev. Lett. 4, 412 (1960).Google Scholar
  55. 55.
    P.A. Flinn, S.L. Ruby, and W.L. Kehl, Science, 143, 1434 (1964).Google Scholar
  56. 56.
    G. Constaboris, R.H. Lindquist, and W. Kundig, Appl. Phys. Lett. 7, 59 (1965).Google Scholar
  57. 57.
    L. Neel, C.R. Acad. Sci. Paris 228, 664 (1949).Google Scholar
  58. 58.
    L. Neel, J. Phys. Soc. Jpn Suppl. B-I, 676 (1962).Google Scholar
  59. 59.
    C.P. Bean and J.D. Livingston, J. Appl. Phys. 30, 1205 (1959).Google Scholar
  60. 60.
    M.C. Hobson and H.M. Gager, J. Canal. 16, 254 (1970).Google Scholar
  61. 61.
    W. Kundig, H. Bommel, G. Constaboris, and R.H. Lindquist, Phys. Rev. 142, 327 (1966).Google Scholar
  62. 62.
    I.P. Suzdalev, Proc. Conf. Appl. Mössbauer Effect, Tihany, Hungary, 1969, p. 193 (1971).Google Scholar
  63. 63.
    A.M. Afanas’ev, I.P. Suzdalev, and E.A. Manikin, Proc. Conf. Appl. Mossbaur Effect, Tihany, Hungary, 1969, p. 184 (1971).Google Scholar
  64. 64.
    S. Morup, H. Topsoe, and J. Lipka, J. Phys (Paris) 37, C6–287 (1976).Google Scholar
  65. 65.
    W. Kundig, K.J. Ando, R.H. Lindquist, and G. Constaboris, Czech J. Phys. 17, 467 (1967).Google Scholar
  66. 66.
    M.C. Hobson, J. Electrochem. Soc. 175c, 115 (1968).Google Scholar
  67. 67.
    D. Schroeer and R.C. Nininger, Phys. Rev. Lett. 19, 632 (1967).Google Scholar
  68. 68.
    D. Schroeer, Phys. Lett, 27a, 507 (1968).Google Scholar
  69. 69.
    H.M. Gager, M.C. Hobson, and J.F. Lefelhocz, Chem. Phys. Lett. 15, 124 (1972).Google Scholar
  70. 70.
    D. Schroeer, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Vol. 5, p. 141, Plenum, New York, 1969.Google Scholar
  71. 71.
    G.M. Bancroft, R.G. Burns, and A.G. Maddock, Geochim. Cosmochim. Acta 31, 2219 (1967).Google Scholar
  72. 72.
    R. Ingalls, Phys. Rev. 133A, 787 (1964).Google Scholar
  73. 73.
    H.H. Wickman, M.P. Klein, and D.A. Shirley, Phys. Rev. 152, 345 (1966).Google Scholar
  74. 74.
    M. Blume, Phys. Rev. Lett. 18, 305 (1967).Google Scholar
  75. 75.
    M. Blume and J.A. Tjon, Phys. Rev. 165, 446 (1968).Google Scholar
  76. 76.
    D. Schroeer, R.F. Marzke, D.J. Erickson, S.W. Marshall, and R.M. Wilenzick, Phys. Rev. B 2, 4414 (1970).Google Scholar
  77. 77.
    S.W. Marshall and R.M. Wilenzich, Phys. Rev. Lett. 16, 219 (1966).Google Scholar
  78. 78.
    I.P. Suzdalev, M. Ya Gen, V.I. Goldanskii, and E.F. Makarov, Soy. Phys. JETP 51, 118 (1966).Google Scholar
  79. 79.
    S. Akselrod, M. Pasternak, and S. Bukshpan, Phys. Rev. 11, 1040 (1975).Google Scholar
  80. 80.
    S. Roth and E.M. Hart, Phys. Lett. A25, 299 (1967).Google Scholar
  81. 81.
    J.S. Van Wieringer, Phys. Lett. A26, 370 (1978).Google Scholar
  82. 82.
    R. Ruppin, Phys. Rev. B 2, 1229 (1970).Google Scholar
  83. 83.
    M.P.A. Viegers, J.C.H. Van Eijkeran, M.M. Van Deventer, and J.M. Trooster, Proc. Int. Conf. Mössbauer Spectroscopy (1975).Google Scholar
  84. 84.
    T. Yoshioka, J. Koczuka, and H. Ikoma, J. Canal. 16, 264 (1970).Google Scholar
  85. 85.
    A. Winzer, F. Vogt, R. Schodel, H. Bremmer, and E. Wiesner, Z. Chem. 10, 312 (1970).Google Scholar
  86. 86.
    A.C. Baetzold and L.E. Mack, J. Chem. Phys. 6, 1513 (1975).Google Scholar
  87. 87.
    K. Johnson and R.P. Messmer, J. Vac. Sci. Technol. 11, 236 (1974).Google Scholar
  88. 88.
    J.G. Fripiat, K.T. Chow, M. Boudart, J.G. Diamond, and K.H. Johnson, J. Mol. Cat. 1, 59 (1975).Google Scholar
  89. 89.
    R.L. Garten, in Mössbauer Effect Methodology, I.J. Gruverman and C.W. Seidel, eds., Vol. 10, p. 69, Plenum, New York, 1976.Google Scholar
  90. 90.
    H. Dunken and H. Hobart, Z. Chem. 6, 276 (1966).Google Scholar
  91. 91.
    M.C. Hobson and H.M. Gager, Proc. Fourth Int. Congr. Catal., 1968, p. 28.Google Scholar
  92. 92.
    H. Hobart and D. Arnold, Proc. Conf. Applic. Mössbauer Effect, 1969, p. 325.Google Scholar
  93. 93.
    See Reference 8, p. 397.Google Scholar
  94. 94.
    S.M. Aharoni and M.H. Litt, J. Appl. Phys. 42, 352 (1971).Google Scholar
  95. 95.
    T. Tachibana and T. Ohya, Bull Chem. Soc. Jpn 42, 2180 (1969).Google Scholar
  96. 96.
    A.M. Rabashov, P.B. Fabrichnyi, B.V. Strakhov, and A.M. Babeshkin, Russ. J. Phys. Chem. 46, 765 (1972).Google Scholar
  97. 97.
    D. Arnold and H. Hobart, Z. Chem. 8, 197 (1968).Google Scholar
  98. 98.
    M.C. Hobson and A.D. Campbell, J. Catal. 8, 294 (1967).Google Scholar
  99. 99.
    W.J. Nicholson and G. Burns, Phys. Rev. 133A, 1568 (1964).Google Scholar
  100. 100.
    R.J. Armstrong, A.H. Morrish, and G.A. Sawatzky, Phys. Lett. 23, 414 (1966).Google Scholar
  101. 101.
    I.P. Suzdalev and E.F. Makarov, Proc. Conf. Appl. Mössbauer Effect, 1969, p. 201.Google Scholar
  102. 102.
    J.M.D. Coey and P.W. Readman, Earth Planet Sci. Lett. 21, 45 (1973).Google Scholar
  103. 103.
    C.E. Johnson, J. Phys. Chem. 2[2], 1996 (1969).Google Scholar
  104. 104.
    T. Shinjo, J. Phys. Soc. Jpn 21, 917 (1966).Google Scholar
  105. 105.
    Proceedings of The International Meeting on Highly Dispersed Iron Oxides and Corrosion,T. Ekdahl, D. Liljequist, and C. Bohm, eds., Institute of Physics, University of Stockholm, Sweden, 1981.Google Scholar
  106. 106.
    S. Morup, Paramagnetic and Superparamagnetic Relaxation Phenomena Studied by Mössbauer Spectroscopy, Polyteknisk Forlag, Lyngby, Denmark, 1981.Google Scholar
  107. 107.
    H. Koelbel and B. Kuespert, Z. Phys. Chem. (Frankfurt) 69, 313 (1970).Google Scholar
  108. 108.
    M.C. Hobson, Nature (London) 214, 79 (1967).Google Scholar
  109. 109.
    M.C. Hobson and H.M. Gager, J. Colloid Interface Sci. 34, 357 (1970).Google Scholar
  110. 110.
    W. M. Boudart, J.A. Dumesic, and H. Topsoe, Proc. Natl. Acad. Sci. USA 74, 806 (1977).Google Scholar
  111. 112.
    J.A. Dumesic, H. Topsoe, S. Khammouma, and M. Boudart, J. Catal. 37, 503 (1975).Google Scholar
  112. 113.
    J.A. Dumesic, H. Topsoe, and M. Boudart, J. Catal. 37, 513 (1975).Google Scholar
  113. 114.
    M. Boudart, H. Topsoe, and J.A. Dumesic, in The Physical Basis for Heterogeneous Catalysis, E. Drauglis and R.G. Jaffee, eds., p. 337, Plenum, New York, 1975.Google Scholar
  114. 115.
    R. Brill, E.L. Richter, and E. Ruch, Angew. Chem. Int. Ed. Engl. 6, 882 (1967).Google Scholar
  115. 116.
    R. Brill and G. Kurzidim, Colloq. Int. CNR Sci. 187, 99 (1969).Google Scholar
  116. 117.
    H.M. Gager, J.F. Lefelhocz, and M.C. Hobson, Chem. Phys. Lett. 23, 386 (1973).Google Scholar
  117. 118.
    M.C. Hobson, Reference 8, p. 393.Google Scholar
  118. 119.
    I.P. Suzdalev, A.V. Shkarin, and G.M. Zhabrova, Kinet Katal. 10, 218 (1969).Google Scholar
  119. 120.
    B.S. Clausen, S. Morup, and H. Topsoe, Surf. Sci., 438 (1981).Google Scholar
  120. 121.
    Y.V. Maksimov, I.P. Suzdalev, Yu P. Yampol’skin, and K.P. Lavrovskin, Kinet. Katal. 12, 1391 (1971).Google Scholar
  121. 122.
    A.N. Karasev, L.S. Polak, E.B. Shlikhter, and V.S. Shpinel, Kinet. Katal. 6, 710 (1965).Google Scholar
  122. 123.
    A.N. Karasev, L.S. Polak, E.B. Shlikhter, and V.S. Shpinel, Zh. Fiz. Khim. 39, 3117 (1965).Google Scholar
  123. 124.
    A.N. Karasev, Yu A. Kolbunovskii, L.A. Poluk, and E.B. Shlikhter, Kinet. Katal. 8, 232 (1967).Google Scholar
  124. 125.
    I.P. Suzdalev, V.I. Goldanskii, E.F. Makarov, A.S. Plachinda, and L.A. Korytko, Soy. Phys. JETP 22, 979 (1966).Google Scholar
  125. 126.
    V.I. Goldanskii, I.E. Neimark, A.S. Plachinda, and I.P. Suzdalev, Teor. Eksp. Khim. 6, 347 (1970).Google Scholar
  126. 127.
    V.I. Goldanskii, I.P. Suzdalev, A.S. Plachinda, and L.G. Shtyrkov, Dokl. Akad. Nauk SSSR 169, 872 (1966).Google Scholar
  127. 128.
    I.P. Suzdalev, A.S. Plachinda, E.F. Makarov, and V.A. Dolgopolov, Russ. J. Phys. Chem. 41, 1522 (1967).Google Scholar
  128. 129.
    S.L. Kordynk, V.I. Lisichenko, and I.P. Suzdalev, Kalloid Zh. 33, 374 (1971).Google Scholar
  129. 130.
    W.N. Delgass, M. Boudart, and G. Parravano, J. Phys. Chem. 72, 3563 (1968).Google Scholar
  130. 131.
    P.N. Ross and W.N. Delgass, in Catalysis, J.W. Hightower, ed., Vol. 1, p. 597, North-Holland, Amsterdam, 1973.Google Scholar
  131. 132.
    C.A. Clausen and M.L. Good, Inorg. Chem. 16, 816 (1977).Google Scholar
  132. 133.
    C.A. Clausen and M.L. Good, J. Catalysis 46, 58 (1977).Google Scholar
  133. 134.
    P.H. Emmett and S.J. Brunauer, J. Am. Chem. Soc. 59, 1553 (1937).Google Scholar
  134. 135.
    P.H. Emmett and S.J. Brunauer, J. Am. Chem. Soc. 62, 1732 (1940).Google Scholar
  135. 136.
    R. Hosemann, A. Preisinger, and W. Vogel, Ber. Bunsenges. Phys. Chem. 70, 796 (1966).Google Scholar
  136. 137.
    R. Hosemann, A. Klemm, A. Schonfield, and W. Wilke, Kolloid-Z.Z. Polymer 2161217, 103 (1967).Google Scholar
  137. 138.
    R. Hosemann, Chem.-Ing.-Tech. 42, 1252 (1970).Google Scholar
  138. 139.
    R. Hosemann, Chem.-Ing.-Tech. 42, 1325 (1970).Google Scholar
  139. 140.
    J.H. Sinfelt, Accts. Chem. Res. 10, 15 (1977).Google Scholar
  140. 141.
    L. Williams and D. Nason, Surf. Sci. 45, 377 (1974).Google Scholar
  141. 142.
    R.L. Garten and D.F. Ollis, J. Catal. 35, 232 (1974).Google Scholar
  142. 143.
    S.M. Qaim, Proc. Phys. Soc. London 90, 1065 (1967).Google Scholar
  143. 144.
    R.L. Garten and M.A. Vannice, J. Mol. Catal. 1, 201 (1975–1976).Google Scholar
  144. 145.
    P.R. Gray and F.E. Farha, in Mössbauer Effect Methodology, I.J. Gruverman and C.W. Seidel, eds., Vol. 10, p. 47, Plenum, New York, 1976.Google Scholar
  145. 146.
    Zhang Su, personal communication.Google Scholar
  146. 147.
    B.J. Bowles and T.E. Cranshaw, Phys. Lett. 17, 258 (1965).Google Scholar
  147. 148.
    V.H. Berndt, H. Mehner, J. Volter, and W. Meisel, Z. Anorg. Allg. Chem. 429, 47 (1977).Google Scholar
  148. 149.
    R. Bacaud, P. Bussiere, F. Figueras, and J.P. Mathieu, C.R. Acad. Sci. Paris, Ser. C 281, 159 (1975).Google Scholar
  149. 150.
    R. Bacaud, P. Bussiere, F. Figueras, and J.P. Mathieu, in Preparation of Catalysts, B. Delmon, P.A. Jacobs, and G. Poncelot eds., p. 509, Elsevier, Amsterdam, 1976.Google Scholar
  150. 151.
    R. Bacaud, P. Bussiere, and F. Figueras, J. Phys. (Paris) Colloq. 40, C2–94 (1979).Google Scholar
  151. 152.
    R. Bacaud, P. Bussiere, and F. Figueras, J. Catal. 69, 399 (1981).Google Scholar
  152. 153.
    D.J. Hucknall, Selective Oxidation of Hydrocarbons, Academic Press, London, 1974.Google Scholar
  153. 154.
    L.V. Skalkina, I.P. Suzdalev, I.K. Kolchin, and L. Ya Margolis, Kind’. Katal. 10, 456 (1969).Google Scholar
  154. 155.
    I.P. Suzdalev, A.A. Firsova, A.Yu. Aleksandrov, L. Ya Margolis, and D.A. Baltrunas, Dokl. Akad. Nauk SSSR 204, 408 (1972).Google Scholar
  155. 156.
    T. Birchall, R.J. Bouchard, and R.D. Shannon, Can. J. Chem. 51, 2077 (1973).Google Scholar
  156. 157.
    F.J. Berry and A.G. Maddock, Inorg. Chim. Acta 31, 181 (1978).Google Scholar
  157. 158.
    F.J. Berry, P.E. Holbourn, and F.W.D. Woodhams, J. Chem. Soc. Dalton, 2241 (1980).Google Scholar
  158. 159.
    F.J. Berry and B.J. Laundy, J. Chem. Soc. Dalton, 1442 (1981).Google Scholar
  159. 160.
    F.J. Berry, J. Catal. 73, 349 (1982).Google Scholar
  160. 161.
    D.R. Pyke, R. Reid, and R.J.D. Tilley, J. Chem. Soc. Faraday Trans. 1, 1174 (1980).Google Scholar
  161. 162.
    Y. Boudeville, F. Figueras, M. Forissier, J.L. Portefaix, and J.C. Vedrine, J. Catalysis 58, 52 (1979).Google Scholar
  162. 163.
    Y.M. Cross and D.R. Pyke, J. Catal. 58, 61 (1979).Google Scholar
  163. 164.
    J.C. McAteer, J. Chem. Soc. Faraday Trans. 1 75, 2768 (1979).Google Scholar
  164. 165.
    V.I. Lazukin, V.M. Belousov, and M.Ya Rubanik, Ukr. Kim Zh. 32, 231 (1966); Chem. Abstr. 65 2111f.Google Scholar
  165. 166.
    S. Tan, Y. Morooka, and A. Ozaki, J. Catal. 17, 125 (1970).Google Scholar
  166. 167.
    S. Tan, Y. Morooka, and A. Ozaki, J. Catal. 17, 132 (1970).Google Scholar
  167. 168.
    J. Buiten, J. Catal. 10, 188 (1968).Google Scholar
  168. 169.
    V.I. Lazukin, M.Ya Rubanik, Ya V. Zhigailo, A.A. Kurgano, and Zh.F. Buteiko, Kinet. Katal. Akad. Nauk SSSR, Resp. Mezhredom, Sb No. 2, 50 (1966); Chem. Abstr. 66 75620Y.Google Scholar
  169. 170.
    A.A. Firsova, N.N. Khovanskaya, A.D. Tsyganov, I.P. Suzdalev, and L.Ya Margolis, Kinet. Katal. 12, 792 (1971).Google Scholar
  170. 171.
    F.J. Berry, Inorg. Chim. Acta 39, 123 (1980).Google Scholar
  171. 172.
    T.Y. Sasaki, K. Nakamura, A. Moritani, A. Morri, and S. Saito, Catalyst (Jpn) 14, 191 (1972).Google Scholar
  172. 173.
    G.K. Boreskov, S.A. Venyaminov, D.V. Dzisko, V.M. Tarasova, N.W. Dindoin, J.P. Sazanova, L.M. Olenkova, and L.M. Kefeli, Kinet. Katal. 10, 1109 (1969).Google Scholar
  173. 174.
    T. Yoshino, S. Saito, and B. Sobukawa, Japanese Patent, 710, 3438 (1971).Google Scholar
  174. 175.
    T. Yoshino, S. Saito, J. Ishikara, T. Sasaki, and K. Sofugawa, Japanese Patent, 710, 2802 (1971).Google Scholar
  175. 176.
    G.K. Boreskov, S.A. Venyaminov, D.V. Dzikso, V.M. Tarasova, N.W. Dindoin, J.P. Sazonova, L.M. Olenkova, and L.M. Kefeli, Kinet. Katal. 70, 1350 (1969).Google Scholar
  176. 177.
    G.K. Boreskov, S.A. Venyaminov, and V.P. Shchukin, Dokl. Akad. Nauk SSSR 192, 831 (1970).Google Scholar
  177. 178.
    V.P. Shchukin, G.K. Boreskov, S.A. Venyaminov, and V.M. Tarasova, Kinet. Katal. 11, 153 (1970).Google Scholar
  178. 179.
    V.P. Shchukin, S.A. Venyaminov, and G.K. Boreskov, Kinet Katal. 11, 1236 (1970).Google Scholar
  179. 180.
    V.P. Shchukin, S.A. Venyaminov, and G.K. Boreskov, Kinet. Katal. 12, 547 (1971).Google Scholar
  180. 181.
    V.V. Malakhov and F.G. Abdikova, Kinet. Katal. 13, 168 (1972).Google Scholar
  181. 182.
    H. Kriegsmann, G. Ohlmann, J. Scheve. and F.J. Ulrich, in Proceedings Sixth Int. Cong. Catalysis, 1976, G.C. Bond, P.B. Wells, and F.C. Tomkins, eds., Vol. 2, p. 836, The Chemical Society, London, 1977.Google Scholar
  182. 183.
    I. Matsuura, in Proceedings Sixth Int. Cong. Catalysis, 1976, G.C. Bond, P.B. Wells, F.C. Tomkins, eds., Vol. 2, p. 819, The Chemical Society, London, 1977.Google Scholar
  183. 184.
    I. Matsuura and G.C.A. Schuit, J. Catal. 20, 19 (1971).Google Scholar
  184. 185.
    I. Matsuura, J. Catal. 35, 452 (1974).Google Scholar
  185. 186.
    R.K. Grasselli and J.J. Callahan, J. Catal. 14, 93 (1969).Google Scholar
  186. 187.
    R.K. Grasselli and D.D. Suresh, J. Catal. 18, 356 (1972).Google Scholar
  187. 188.
    R.K. Grasselli and D.D. Suresh, J. Catal. 25, 273 (1972).Google Scholar
  188. 189.
    T.G.K. Simons, P.N. Houtman, and G.C.A. Schuit, J. Catal. 23, 1 (1971).Google Scholar
  189. 190.
    I. Matsuura, J. Catal. 35, 452 (1974).Google Scholar
  190. 191.
    K. Aykan and A.W. Sleight, J. Amer. Chem. Soc. 53, 427 (1970).Google Scholar
  191. 192.
    B.J. Evans, J. Catal. 41, 271 (1976).Google Scholar
  192. 193.
    T. Birchall and A.W. Sleight, J. Catal. 53, 280 (1978).Google Scholar
  193. 194.
    A.A. Firsova, I.P. Suzdalev, and L.Ya Margolis, Russ. J. Phys. Chem. 48, 1743 (1974).Google Scholar
  194. 195.
    Yu.V. Maksimov, I.P. Suzdalev, V.I. Goldanski, O.V. Krylov, L.Ya Margolis, and A. E. Nechitailo, Dokl. Akad. Nauk SSSR 221, 880 (1975).Google Scholar
  195. 196.
    W. Jeitscuko, A.W. Sleight, W.R. McClellan, and J.F. Weiher, Acta. Cryst. B32, 1163 (1976).Google Scholar
  196. 197.
    B.C. Gates, J.R. Katzer, and G.C.A. Schult, in Chemistry of Catalytic Processes, McGraw-Hill, New York, 1979, p. 390.Google Scholar
  197. 198.
    G.C.A. Schuit and B.C. Gates, Am. Inst. Chem. Eng. J. 19, 417 (1973).Google Scholar
  198. 199.
    R.J. Voorheove and J.C.M. Stuiver, J. Catal. 23, 243 (1971).Google Scholar
  199. 200.
    A.L. Farragher and P. Cosee, Proc. Int. Congr. Catal., 5th, 1973, p. 1301.Google Scholar
  200. 201.
    A.L. Farragher, “Symposium on the Role of Solid State Chemistry in Catalysis,” ACS Meeting, New Orleans, March 1971.Google Scholar
  201. 202.
    J.M.J. Lipsch and G.C.A. Schuit, J. Catal. 15, 179 (1969).Google Scholar
  202. 203.
    F.E. Massoth, J. Catal. 36, 164 (1975).Google Scholar
  203. 204.
    V.H.J. De Beer, T.H. Van Sintfiet, G.H.A. Van Der Steen, C. Zwaga, and G.C.A. Schult, J. Catal. 35, 297 (1974).Google Scholar
  204. 205.
    H. Topsoe and S. Morup, Proc. Int. Conf Mössbauer Spec., Cracow, Poland, 1975, Vol. 1, p. 305, Az Hrynkiewicz and J.A. Sawicki, eds., Akad. Gorniczo-Hutnicza Im. S. Staszica, W. Krakowie, 1975.Google Scholar
  205. 206.
    S. Morup, B.S. Clausen, and H. Topsoe, J. Phys. (Paris) Colloq. C2 40, C2–88 (1979).Google Scholar
  206. 207.
    H. Topsoe, B.S. Clausen, N. Burriesci, R. Candia, and S. Morup, in Preparation of Catalysts II, B. Delamon, P. Grange, P.A. Jacobs, and G. Poncelot, eds., p. 479, Elsevier, Amsterdam, 1979.Google Scholar
  207. 208.
    H. Topsoe, B.S. Clausen, R. Candia, C. Wivel, and S. Morup, J. Catal. 68, 433 (1981).Google Scholar
  208. 209.
    C. Wivel, R. Candia, B.S. Clausen, S. Morup, and H. Topsoe, J. Catal. 68, 453 (1981).Google Scholar
  209. 210.
    D.W. Breck, Zeolite Molecular Sieves, Wiley ( Interscience ), New York, 1974.Google Scholar
  210. 211.
    S. Morup, B.S. Clausen, and H. Topsoe, J. Phys. (Paris) 40, C2–88 (1979).Google Scholar
  211. 212.
    P.B. Venuto and P.S. Laudis, in Advances in Catalysis, D.D. Eley, H. Pines and P.B. Weisz, eds., Vol. 18, p. 259, Academic Press, New York, 1968.Google Scholar
  212. 213.
    D.W. Breck, Zeolite Molecular Sieves, Wiley ( Intersciences ), New York, 1974.Google Scholar
  213. 214.
    E.M. Flanigen and L.B. Sand, (eds), Molecular Sieve Zeolites, Vols. I and II, American Chemical Society, Washington, D.C., 1971.Google Scholar
  214. 215.
    W.M. Meier and J.B. Hytterhoeven (eds), Molecular Sieves, American Chemical Society, Washington, D.C., 1973.Google Scholar
  215. 216.
    W.N. Delgas, R.L. Garten, and M. Boudart, J. Phys. Chem. 73, 2970 (1969).Google Scholar
  216. 217.
    R.L. Garten, W.N. Delgas, and M. Boudart, J. Canal. 18, 90 (1970).Google Scholar
  217. 218.
    Y.Y. Huang and J.R. Anderson, J. Catal. 40, 143 (1975).Google Scholar
  218. 219.
    J.A. Morrice and L.V.C. Rees, Tran. Faraday Soc. 64, 1388 (1968).Google Scholar
  219. 220.
    J.B. Lee, J. Carol. 68, 27 (1981).Google Scholar
  220. 221.
    R.L. Garten, J. Gallard-Nechtschein, and M. Boudart, Ind. Eng. Chem. Fundam. 12, 299 (1973).Google Scholar
  221. 222.
    B.L. Dickson and L.V.C. Rees, J. Chem. Soc. (Faraday 1) 70, 2038 (1974).Google Scholar
  222. 223.
    B.L. Dickson and L.V.C. Rees, J. Chem. Soc. (Faraday 1) 70, 2060 (1974).Google Scholar
  223. 224.
    C.A. Clausen and M.L. Good, in Mössbauer Effect Methodology, I.J. Gruverman and C.W. Seidel, eds., Vol. 10, p. 93, Plenum Press, New York, 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Frank J. Berry
    • 1
  1. 1.Department of ChemistryUniversity of BirminghamBirminghamEngland

Personalised recommendations