Far Infrared Optical and Magneto-Optical Studies of Si Space Charge Layers

  • B. D. McCombe
Chapter
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)

Abstract

The pioneering work on Si space charge layers was carried out more than a decade ago by workers at IBM.1, 2 The experimental vehicle for these studies was the Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) which plays such a dominant role in current electronics technology. Experimental,1, 3 transport and magneto-transport, and theoretical4 investigations were made at this time. These low temperature studies demonstrated the two-dimensional (2D) nature of carrier motion in the plane of the interface, and it was felt that a reasonable understanding of the electronic properties of this system, based on a self-consistent Hartree model was in hand. As a result relatively few additional studies were carried out for several years after 1968.

Keywords

Cyclotron Resonance Landau Level Inversion Layer Space Charge Layer Fourier Transform Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Fowler, F.F. Fang, W.E. Howard and P.J. Stiles, J. Phys. Soc. Japan Suppl. 21., 331 (1966); Phys. Rev. Lett. 16, 901 (1966).Google Scholar
  2. 2.
    F. Stern and W.E. Howard, Phys. Rev. 163, 816 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    F.F. Fang and P.J. Stiles, Phys. Rev. 174, 823 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    F. Stern, Phys. Rev. B5, 4891 (1972) and references therein.ADSGoogle Scholar
  5. 5.
    R.G. Wheeler and R.W. Ralston, Phys. Rev. Letters 27, 925 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    A. Kamgar, P. Kneschaurek, G. Dorda, and J.F. Koch, Phys. Rev. Lett. 32, 1251 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Allen, D.C. Tsui, and J.V. Dalton, Phys. Rev. Lett. 32, 107 (1974)ADSCrossRefGoogle Scholar
  8. G. Abstreiter, P. Kneschaurek, J.P. Kotthaus, and J.F. Koch, Phys. Rev. Lett. 32, 104 (1974).ADSCrossRefGoogle Scholar
  9. 8.
    T.A. Kennedy, R.J. Wagner, B.D. McCombe and D.C. Tsui, Phys. Rev. Lett. 35, 1031 (1975).ADSCrossRefGoogle Scholar
  10. 9.
    See e. g. C.C. Grimes, Surface Science 73, 379 (1978).ADSCrossRefGoogle Scholar
  11. 10.
    See e. g. G.A. Sai Halasz, Proc, of the XIVth Int’l Conf. on the Physics of Semiconductors (Edinburgh), Inst. of Phys. Conf. Ser. 43, 21 (1979)Google Scholar
  12. R. Dingle, Proc, of the XIIIth Int’l Conf. on the Physics of Semiconductors (Rome) ed. F.G. Fumi (Tipografia Marves, Rome, 1976), p. 965 and references therein.Google Scholar
  13. 11.
    H.L. Stürmer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, Proc. of the 6th Int’l Conf. on the Physics of Compound Semiconductor Interfaces, J. Vac. Sci. Tech., to be published; D.C. Tsui, R.A. Logan, to be published.Google Scholar
  14. 12.
    J.C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 (1965).ADSCrossRefGoogle Scholar
  15. 13.
    See e. g. ref. 4.Google Scholar
  16. 14.
    T. Ando, Phys. Rev. B13, 3468 (1976)ADSGoogle Scholar
  17. other approaches have also been used to calculate the effects of exchange and correlation see e. g. F. Stern, Phys. Rev. Lett. 30, 278 (1973), and B. Vinter, Phys. Rev. Letters 35, 578 (1975).ADSCrossRefGoogle Scholar
  18. 15.
    F. Stern, phys. Rev. Letters 33, 960 (1974); the depletion potential for the accumulation case at low temperatures is determined by the compensated minority impurities (NA for n-type Si).ADSCrossRefGoogle Scholar
  19. 16.
    J.L. Smith and P.J. Stiles, Phys. Rev. Lett. 29, 102 (1973).ADSCrossRefGoogle Scholar
  20. 17.
    J.F. Janak, Phys. Rev. 178, 1416 (1969).ADSCrossRefGoogle Scholar
  21. 18.
    T. Ando and Y. Vemura, J. Phys. Soc. Japan 37, 1044 (1974).ADSCrossRefGoogle Scholar
  22. 19.
    C.S. Ting, T.K. Lee, and J.J. Quinn, Phys. Rev. Lett. 34, 870 (1975)ADSCrossRefGoogle Scholar
  23. T. K. Lee, C.S. Ting, and J.J. Quinn, Solid State Commun. 16, 1309 (1975).ADSCrossRefGoogle Scholar
  24. 20.
    S.M. Sze, “Physics of Semiconductor Devices” (Wiley-Interscience, New York, 1969), Chapters 9 and 10.Google Scholar
  25. 21.
    P. Richman, “MOS Field-Effect Transistors and Integrated Circuits” (Wiley-Interscience, New York, 1973).Google Scholar
  26. 22.
    R.J. Wagner, A.J. Zelano, and L.H. Ngai, Opt. Commun, 8, 46 (1973).ADSCrossRefGoogle Scholar
  27. 23.
    B.D. McCombe, R.T. Holm, and D.E. Schafer, Solid State Commun. to be published; and, to be published.Google Scholar
  28. 24.
    C.C. Hu, J. Pearse, K.M. Cham, and R.G. Wheeler, Surface Science 73, 207 (1978).ADSCrossRefGoogle Scholar
  29. 25.
    See e. g. J.F. Koch, Surface Science 58, 104 (1976).ADSCrossRefGoogle Scholar
  30. 26.
    R.G. Wheeler and H.S. Goldberg, IEEE Trans. on Elec. Devices ED-22, 1001 (1975); and ref. 5.ADSCrossRefGoogle Scholar
  31. 27.
    E. Gornik and D.C. Tsui, Surface Science 73, 217 (1978).ADSCrossRefGoogle Scholar
  32. 28.
    E. Gornik and D.C. Tsui, Phys. Rev. Lett. 37 1475 (1976).ADSCrossRefGoogle Scholar
  33. 29.
    A. Kamgar, P. Kneschaurek, G. Dorda, and J.F. Koch, Phys. Rev. Lett. 32, 1251 (1974).ADSCrossRefGoogle Scholar
  34. 30.
    P. Kneschaurek and J.F. Koch, Phys. Rev. B15, 1590 (1977); and references therein.ADSGoogle Scholar
  35. 31.
    For a recent review see T. Ando, Surface Science 73 1 (1978).Google Scholar
  36. 32.
    This was first pointed out for space charge layers by W.P. Chen, Y.J. Chen and E. Burstein, Surface Science 58 263 (1976).ADSCrossRefGoogle Scholar
  37. 33.
    S.J. Allen, D.C. Tsui, and B. Vinter, Solid State Commun. 20, 425 (1976).ADSCrossRefGoogle Scholar
  38. 34.
    T. Ando, Solid State Commun. 21, 133 (1977); Zeitschrift für Physik B26, 263 (1977).MathSciNetADSCrossRefGoogle Scholar
  39. 35.
    S. Das Sarma, R.K. Kalia, J.J. Quinn, and M. Nakayama, Bull. Am. Phys. Soc. 24, 437 (1979); and to be published.Google Scholar
  40. 36.
    C.S. Ting, private communication, and to be published.Google Scholar
  41. 37.
    M.J. Kelly and L.M. Falicov, Phys. Rev. Lett. 37, 1021 (1976); Phys. Rev. B15, 1974 (1977).Google Scholar
  42. 38.
    See e. g. D.C. Tsui and G. Kaminsky, Phys. Rev. Lett. 42, 595 (1979).ADSCrossRefGoogle Scholar
  43. 39.
    T. Cole and B.D. McCombe, to be published.Google Scholar
  44. 40.
    A. Hartstein and A.B. Fowler, Phys. Rev. Lett. 34, 1435 (1975); Proc. of the XIIIth Intl Conf. on the Physics of Semiconductors (Tipografia Marves, Rome, 1976) ed. by F.G. Fumi, p. 741.ADSCrossRefGoogle Scholar
  45. 41.
    See e. g. F.F. Fang, A.B. Fowler, and A. Hartstein, Surface Science 73, 269 (1978).ADSCrossRefGoogle Scholar
  46. 42.
    G.M. Kramer, B.G. Martin, and R.F. Wallis, Surface Science 73, 96 (1978).ADSCrossRefGoogle Scholar
  47. 43.
    B.D. McCombe and D.E. Schäfer, Proc. of the XIVth Int’l Conf. on the Physics of Semiconductors (Edinburgh), Inst. of Phys. Conf. Ser. 43, 1227 (1979).Google Scholar
  48. 44.
    G.M. Kramer and R.F. Wallis, ibid., p. 1243.Google Scholar
  49. 45.
    T. Ando, J. Phys. Soc. Japan 38, 989 (1975).ADSCrossRefGoogle Scholar
  50. 46.
    G. Abstreiter, J.P. Kotthaus, J.F. Koch, and G. Dorda, Phys. Rev. B14, 2480 (1976).ADSGoogle Scholar
  51. 47.
    R.J. Wagner, T.A. Kennedy, B.D. McCombe, and D.C. Tsui, to be published.Google Scholar
  52. 48.
    T.A. Kennedy, R.J. Wagner, B.D. McCombe, and J.J. Quinn, Solid State Commun. 18, 275 (1976).ADSCrossRefGoogle Scholar
  53. 49.
    See ref. 45.Google Scholar
  54. 50.
    See ref. 8.Google Scholar
  55. 51.
    M. Prasad and S. Fujita, Surface Science 73, 494 (1978).ADSCrossRefGoogle Scholar
  56. 52.
    J.L. Smith and P.J. Stiles, Phys. Rev. Lett. 29, 102 (1972).ADSCrossRefGoogle Scholar
  57. 53.
    C.S. Ting, T.K. Lee and J.J. Quinn, Phys. Rev. Lett. 34, 870 (1975).ADSCrossRefGoogle Scholar
  58. 54.
    B. Vinter, Phys. Rev. Lett. 35, 1044 (1975).ADSCrossRefGoogle Scholar
  59. 55.
    T.K. Lee, C.S. Ting, and J.J. Quinn, Solid State Commun. 16, 1309 (1975).ADSCrossRefGoogle Scholar
  60. 56.
    W. Kohn, Phys. Rev. 123, 1242 (1961).ADSMATHCrossRefGoogle Scholar
  61. 57.
    See e. g. J.J. Quinn, B.D. McCombe, K.L. Ngai, and T.L. Reinecke, Phys. Lett. 54A, 161 (1975).ADSGoogle Scholar
  62. 58.
    T. Ando, Phys. Rev. Lett. 36, 1383 (1976).ADSCrossRefGoogle Scholar
  63. 59.
    C.S. Ting, S.C. Ying, and J.J. Quinn, Phys. Rev. Lett. 17, 215 (1976).ADSCrossRefGoogle Scholar
  64. 60.
    N. Tzoar, P.M. Platzman and A. Simons, Phys. Rev. Lett. 36, 1200 (1976).ADSCrossRefGoogle Scholar
  65. 61.
    J.J. Quinn, private communication.Google Scholar
  66. 62.
    G. Abstreiter, J.F. Koch, P. Goy, and Y. Couder, Phys. Rev. B14, 2494 (1976).ADSGoogle Scholar
  67. 63.
    The temperature dependence of the mass in the metallic region (decreasing with increasing temperature, ref. 47) as well as the increasing mass with decreasing density are in qualitative agreement with a recent theoretical calculation based on electron-electron interactions, C.S. Ting and A. Ganguly, Phys. Rev., to be published.Google Scholar
  68. 64.
    J.P. Kotthaus, G. Abstreiter, J.F. Koch, and R. Ranvand, Phys. Rev. Lett. 34, 151 (1975).ADSCrossRefGoogle Scholar
  69. 65.
    H.J. Mikeska and H. Schmidt, Zeitschrift für Physik B20, 43 (1975).ADSGoogle Scholar
  70. 66.
    T.A. Kennedy, R.J. Wagner, B.D. McCombe, and D.C. Tsui, Solid State Commun. 21, 459 (1977).CrossRefGoogle Scholar
  71. 67.
    H. Fukuyama, Solid State Commun. 17, 1323 (1975).ADSCrossRefGoogle Scholar
  72. 68.
    Y.E. Lozovik and V.I. Yudson, JETP Lett. 22, 11 (1975).ADSGoogle Scholar
  73. 69.
    K.L. Ngai and C.T. White, Surface Science 73, 31 (1978).ADSCrossRefGoogle Scholar
  74. 70.
    C.T. White and K.L. Ngai, ibid., p. 116; and Phys. Rev., to be published.Google Scholar
  75. 71.
    R.J. Wagner and D.C. Tsui, Solids and Plasmas in High Magnetic Fields, ed. by R.L. Aggarwal, A.J. Freeman and B.B. Schwartz (North Holland, Amsterdam, 1979), p. 26.Google Scholar
  76. 72.
    B.A. Wilson, D.C. Tsui, and S.J. Allen, Jr., Bull. Am. Phys. Soc. 24, 436 (1979).Google Scholar
  77. 73.
    H. Kuhlbeck and J.P. Kotthaus, Phys. Rev. Lett. 35, 1019 (1975).ADSCrossRefGoogle Scholar
  78. 74.
    P. Stallhofer, J.P. Kotthaus, and J.F. Koch, Solid State Commun. 20, 519 (1976).ADSCrossRefGoogle Scholar
  79. 75.
    M.J. Kelley and L.M. Falicov, Solid State Commun. 22, 447 (1977).ADSCrossRefGoogle Scholar
  80. 76.
    P. Stallhofer, J.P. Kotthaus, and G. Abstreiter, submitted for publication.Google Scholar
  81. 77.
    T. Ando, J. Phys. Soc. Japan 39, 411 (1975).ADSCrossRefGoogle Scholar
  82. 78.
    W. Beinvogl, A. Kamgar, and J.F. Koch, Phys. Rev. B14, 4274 (1976).ADSGoogle Scholar
  83. 79.
    W. Beinvogl and J.F. Koch, Phys. Rev. Lett. 40, 1736 (1978).ADSCrossRefGoogle Scholar
  84. 80.
    T. Ando, Solid State Commun. 21, 801 (1977).MathSciNetADSCrossRefGoogle Scholar
  85. 81.
    See e. g. A.A. Lakhani, T. Cole, and P.J. Stiles, Surface Science 73, 223 (1978)ADSCrossRefGoogle Scholar
  86. D.C. Tsui, S.J. Allen, Jr., R.A. Logan, A. Kamgar, and S.N. Coppersmith, ibid., p. 419; and references therein.Google Scholar
  87. 82.
    S.J. Allen, Jr., D.C. Tsui, and R.A. Logan, Phys. Rev. Lett. 38, 980 (1977)ADSCrossRefGoogle Scholar
  88. T. N. Theis, J.P. Kotthaus, and P.J. Stiles, Solid State Commun. 24, 273 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • B. D. McCombe
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations