Level Quantization and Broadening for Band Electrons in a Magnetic Field: Magneto-Optics Throughout the Band

  • L. M. Falicov
Chapter
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)

Abstract

The energy spectrum of an electron in the simultaneous presence of an external magnetic field \( {\text{H}} \) and a periodic crystal potential \( V\left( {\vec r} \right)\) constitutes a difficult and by now classical problem. It is difficult because the effects of the potential \( V\left( {\vec r} \right)\) and the field H are quite different in nature. The former causes the formation of energy bands while the latter quantizes the electronic motion and tends to form narrow levels. The problem is further complicated by the fact that the two natural “periods,” introduced by the field H and the potential \( V\left( {\vec r} \right)\), respectively, are, for most values of the field, incommensurable.

Keywords

Magnetic Field Line Shape Level Quantization Landau Level Modulation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Landau, Z. Phys. 54: 629 (1930).ADSGoogle Scholar
  2. 2.
    L. Onsager, Philos. Mag. 43: 1006 (1952).Google Scholar
  3. 3.
    See also, L.M. Falicov, in: “Electrons in Crystalline Solids” I.A.E.A., Vienna (1973), p. 207.Google Scholar
  4. 4.
    See, for instance, the review article by B. Lax and J. G. Mavroides, in: “Semiconductors and Semimetals,” R.K. Willardson and A.C. Beer, eds., Academic, New York (1967), Vol. 3, p. 321.Google Scholar
  5. 5.
    S.O. Sari, Phys. Rev. Lett. 26: 1167 (1971); Phys. Rev. B 6: 2304 (1972); Solid State Commun. 12: 705 (1973); Phys. Rev. Lett. 30: 1323 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    A. Baldereschi and F. Bassani, Phys. Rev. Lett. 19: 66 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    F. Bassani and A. Baldereschi, Surf. Sci. 37: 304 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    P.G. Harper, Proc. Phys. Soc. Lond. A 68: 874 (1955).ADSMATHCrossRefGoogle Scholar
  9. 9.
    G.E. Zil’berman, Zh. Eksp. Teor. Fiz. 30: 1092 (1956) [Sov. Phys.-JETP 3: 835 (1957)].Google Scholar
  10. 10.
    L.M. Roth, Phys. Rev. 145: 434 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    D. Langbein, Phys. Rev. 180: 633 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    W.G. Chambers, Phys. Rev. 140: A 135 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    H.W. Capel, Physica 54: 361 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    P.S. Kapo and E. Brown, Phys. Rev. B 7: 3429 (1973)Google Scholar
  15. F. A. Butler and E. Brown, Phys. Rev. 166: 630 (1968).ADSCrossRefGoogle Scholar
  16. 15.
    W.Y. Hsu and L.M. Falicov, Phys. Rev. B 13: 1595 (1976).ADSCrossRefGoogle Scholar
  17. 16.
    J.M. Luttinger and W. Kohn, Phys. Rev. 97: 869 (1955)ADSMATHCrossRefGoogle Scholar
  18. G. H. Wannier, Rev. Mod. Phys. 34: 645 (1962).MathSciNetADSCrossRefGoogle Scholar
  19. 17.
    See, for example, C. Kittel, “Introduction to Solid State Physics,” 4th ed. Wiley, New York (1971), Chap. 9.Google Scholar
  20. 18.
    For a comprehensive review see U.S. Bureau of Standards, “Tables Relating to Mathieu Functions,” Columbia University, New York, (1951), p. xv.Google Scholar
  21. 19.
    P.M. Morse and H. Feshbach, “Methods of Theoretical Physics,” McGraw-Hill, New York (1953), Vol. II, Chap. 9.MATHGoogle Scholar
  22. 20.
    J. Zak, Phys. Rev. 134: A1602 (1964); 134: A1607 (1964).MathSciNetADSCrossRefGoogle Scholar
  23. 21.
    M. Ya. Azbel, Zh. Eksp. Teor. Fiz. 46: 929 (1964) [Sov. Phys.-JETP] 19: 634 (1964)Google Scholar
  24. 22.
    E. Brown, Phys. Rev. 133: A1038 (1964).ADSCrossRefGoogle Scholar
  25. 23.
    J.C. Slater, Phys. Rev. 87: 807 (1952).ADSMATHCrossRefGoogle Scholar
  26. 24.
    See, for example, I.S. Gradshteyn and I.M. Ryzhik, “Table of Integrals, Series and Products,” translated by A. Jeffrey, Academic, New York (1965), Chap. 8.Google Scholar
  27. 25.
    L.M. Roth, B. Lax and S. Zwerdling, Phys. Rev. 114: 90 (1959).ADSCrossRefGoogle Scholar
  28. 26.
    R.L. Aggarwal, in: “Semiconductors and Semimetals,” R.K. Willardson and A.C. Beer, eds., Academic, New York (1972), Vol. 9, p. 151.Google Scholar
  29. 27.
    M. Cardona, “Modulation Spectroscopy,” Academic, New York (1969).Google Scholar
  30. 28.
    R.J. Elliott, Phys. Rev. 108: 1384 (1957).ADSCrossRefGoogle Scholar
  31. 29.
    J.O. Dimmock, in: “Semiconductors and Semimetals,” R.K. Willardson and A.C. Beer, eds., Academic, New York (1967), Vol. 3, p. 259Google Scholar
  32. R. S. Knox, “Theory of Excitons,” Academic, New York (1963).MATHGoogle Scholar
  33. 30.
    B. Velicky and J. Sak, Phys. Status Solidi 16: 147 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • L. M. Falicov
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations