Diffusion in Random Media

  • George C. Papanicolaou
Chapter
Part of the Surveys in Applied Mathematics book series (SUAM)

Abstract

We present a survey of homogenization methods for diffusion equations with periodic and random diffusivity.

Keywords

Random Medium Effective Conductivity Spherical Inclusion Poisson Point Process Periodic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Avellaneda, T. Hou and G. Papanicolaou, “Finite difference methods for partial differential equations with rapidly oscillating coefficients,” Math. Modeling and Num. Analysis, 25: 693–710 (1991).MATHMathSciNetGoogle Scholar
  2. [2]
    I. Babuska, “Solution of interface problems by homogenization I, II, III,” SIAM J. Math Analysis, 7: 603–634, 635-645, 1976.CrossRefMATHMathSciNetGoogle Scholar
  3. I. Babuska, “Solution of interface problems by homogenization I, II, III,” SIAM J. Math Analysis, 8: 923–937 (1977).CrossRefMATHMathSciNetGoogle Scholar
  4. [3]
    N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composites, Kluwer (1989).Google Scholar
  5. [4]
    A. Bensoussan, J. L. Lions and G. Papanicolaou, “Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions in the half space,” in: Proc. of Intern. Symp. SDE, Kyoto 1976, pp. 21–40, edited by K. Ito, J. Wiley, New York (1978).Google Scholar
  6. [5]
    A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North Holland, (1978).Google Scholar
  7. [6]
    R. Caflisch, M. Miksis, G. Papanicolaou and Lu Ting, “Effective equations for wave propagation in bubbly liquids,” J. Fluid Dynamics, 153: 105–120 (1985).Google Scholar
  8. [7]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley (1953).Google Scholar
  9. [8]
    G. Dal Maso, Introduction to Г-Convergence, Birkhäuser (1992).Google Scholar
  10. [9]
    E. DeGiorgi and S. Spagnolo, “Sulla convergenza degli integrali dell’ energia per operatori ellittici del secundo ordine,” Boll U.M.I., 8: 391–11 (1983).MathSciNetGoogle Scholar
  11. [10]
    B. Engquist and T. Hou, “Particle method approximation of oscillatory solutions to hyperbolic partial differential equations,” SIAM J. Num. Anal., 26: 289–319, (1989).CrossRefMATHMathSciNetGoogle Scholar
  12. [11]
    R. Figari, G. Papanicolaou and J. Rubinstein, The Point Interaction Approximation for Diffusion in Regions with Many Small Holes, Lecture Notes in Biomathematics, Vol. 70, Springer, 202-209 (1987).Google Scholar
  13. [12]
    H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Dynamics, 5: 317–328 (1959).MATHMathSciNetGoogle Scholar
  14. [13]
    E. I. Hruslov and V A. Marchenko, Boundary Value Problems in Regions with Fine-Grained Boundaries, Naukova Duma, Kiev (1974).Google Scholar
  15. [14]
    M. Kac, “Probabilistic methods in some problems of scattering theory,” Rocky Mountain J. of Math., 4: 511–537,(1974).CrossRefMATHGoogle Scholar
  16. [15]
    K. Kawazu, Y. Tamura and H. Tanaka, “Localization of diffusion processes in one-dimensional random environment,” J. Math. Soc. Japan, 44: 515–550 (1992).CrossRefMATHMathSciNetGoogle Scholar
  17. [16]
    J. B. Keller, “Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders,” Journal of Appl. Physics, 34: 991–993 (1963).CrossRefMATHGoogle Scholar
  18. [17]
    O. D. Kellogg, Foundations of Potential Theory, Dover (1953).Google Scholar
  19. [18]
    S. Kozlov, “The method of averaging and walks in inhomogeneous environments,” Russian Math Surveys 40: 97–128 (1985).Google Scholar
  20. [19]
    S. Kozlov, “Geometric aspects of averaging,” Russian Math. Surveys, 44: 91–144 (1989).CrossRefMATHMathSciNetGoogle Scholar
  21. [20]
    P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel (1993).CrossRefMATHGoogle Scholar
  22. [21]
    R. Landauer, “Electrical conductivity in inhomogeneous media,” in: Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner (eds.), Amer. Ins. Physics (1978).Google Scholar
  23. [22]
    J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, Oxford (1881).Google Scholar
  24. [23]
    O. Oleinik, Mathematical Problems in Elasticity and Homogenization, North Holland (1992).Google Scholar
  25. [24]
    S. Ozawa, “Point interaction potential approximation for (−Δ + U)−1 and eigenvalues for the Laplacian on wildly perturbed domains,” Osaka, J. Math, 20: 923–937 (1983).MATHMathSciNetGoogle Scholar
  26. [25]
    G. Papanicolaou and S. R. S. Varadhan, “Boundary value problems with rapidly oscillating random coefficients,” Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields, Esztergom (Hungary) 1979, North Holland, 835-873, (1982).Google Scholar
  27. [26]
    G. Papanicolaou and S. R. S. Varadhan, “Diffusion in regions with many small holes,” in: Proceedings of Vilnius Conference in Probability, B. Grigelionis ed., Springer Lecture Notes in Control and Information Sciences, vol. 25, 190-206 (1980).Google Scholar
  28. [27]
    J. W. S. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of the medium,” Phil. Mag., 34: 481–502 (1892).CrossRefMATHGoogle Scholar
  29. [28]
    A. S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. Roy. Soc. Lond. A, 386: 263 (1983).CrossRefGoogle Scholar
  30. [29]
    Ya. Sinai, Introduction to Ergodic Theory, Princeton University Press (1977).Google Scholar
  31. [30]
    Ya. Sinai, “Limit behavior of one-dimensional random walks in random environment,” Theor. Prob. Appl., 27: 247–258 (1982).MathSciNetGoogle Scholar
  32. [31]
    M. Vogelius and G. Papanicolaou, “A projection method applied to diffusion in a periodic structure,” SIAM J. Appl Math., 42: 1302–1322 (1982).CrossRefMATHMathSciNetGoogle Scholar
  33. [32]
    K. Yosida, Functional Analysis, Springer (1979).Google Scholar
  34. [33]
    J. M. Ziman, Principles of the Theory of Solids, Cambridge (1972).Google Scholar
  35. [34]
    M. Zuzovski and H. Brenner, “Effective conductivity of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix,” ZAMP, 28: 979–992 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • George C. Papanicolaou
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations