Asymptotic Methods for Partial Differential Equations: The Reduced Wave Equation and Maxwell’s Equations

  • Joseph B. Keller
  • Robert M. Lewis
Chapter
Part of the Surveys in Applied Mathematics book series (SUAM)

Abstract

The short wavelength or high frequency asymptotic theory of the reduced wave equation and of Maxwell’s equations is presented. The theory is applied to representative problems involving reflection, transmission, and diffraction in both homogeneous and inhomogeneous media. It is a slightly revised version of a report1 written in 1964 by the authors. Despite its age, it still provides a convenient introduction to the formal asymptotic theory and to the geometrical theory of diffraction.

Keywords

Asymptotic Expansion Asymptotic Solution Line Source Asymptotic Method Geometrical Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bazer and O. Fleischman, “Propagation of weak hydromagnetic discontinuities,” Physics of Fluids, 2: 366 (1956).CrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Bazer and J. Hurley, Geometrical Hydromagnetics, Research Report EM-176, N.Y.U. (1962).Google Scholar
  3. [3]
    R. N. Buchal and J. B. Keller, “Boundary layer problems in diffraction theory,” Comm. Pure Appl. Math., 13: 85 (1960).CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    C. R. Chester and J. B. Keller, “Asymptotic solution of systems of linear ordinary differential equations with discontinuous coefficients,” J. Math. and Mech., 10: 557, (1961).MATHMathSciNetGoogle Scholar
  5. [5]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience Publishers (1962).Google Scholar
  6. [6]
    A. Erdélyi, Asymptotic Expansions, Dover Publications (1956).Google Scholar
  7. [7]
    F. G. Friedlander and J. B. Keller, “Asymptotic expansions of solutions of (∇2 + k 2)u = 0,” Comm. Pure Appl. Math., 8: 387 (1955).CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    F. G. Friedlander, Sound Pulses, Cambridge University Press (1958).Google Scholar
  9. [9]
    K. O. Friedrichs and J. B. Keller, “Geometrical acoustics II. Diffraction, reflection and refraction of a weak spherical or cylindrical shock at a plane interface,” J. Appl. Phys., 26: 961 (1955).CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    D. S. Jones and M. Kline, “Asymptotic expansion of multiple integrals and the method of stationary phase,” J. Math. and Phys., 37: 1 (1958).MATHMathSciNetGoogle Scholar
  11. [11]
    F. C. Karal and J. B. Keller, “Elastic wave propagation in homogeneous and inhomogeneous media,” J. Acoust. Soc. Amer., 31: 694 (1959).CrossRefMathSciNetGoogle Scholar
  12. [12]
    I. Kay and J. B. Keller, “Asymptotic evaluation of the field at a caustic,” J. Appl. Phys., 25: 876 (1954).CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    I. Kay, “New equation for the asymptotic field amplitude in a two-dimensional inhomogeneous medium,” J. Acoust. Soc. Amer., 33: 1085 (1961).CrossRefMathSciNetGoogle Scholar
  14. [14]
    J. B. Keller and H. B. Keller, “Determination of reflected and transmitted fields by geometrical optics,” J. Opt. Soc. Amer., 40: 48 (1950).CrossRefMathSciNetGoogle Scholar
  15. [15]
    J. B. Keller and S. Prieser, Determination of Reflected and Transmitted Fields by Geometrical Optics II, Research Report, E.M. 20, N.Y.U. (1950).Google Scholar
  16. [16]
    J. B. Keller, “The geometrical theory of diffraction,” Proceedings of the Symposium on Microwave Optics, McGill University (1953).Google Scholar
  17. J. B. Keller J. Opt. Soc. Amer., 52: 116, (1962).CrossRefMathSciNetGoogle Scholar
  18. [17]
    J. B. Keller, “Geometrical acoustics I. The theory of weak shocks,” J. Appl. Phys., 25: 993 (1954).Google Scholar
  19. [18]
    J. B. Keller, R. M. Lewis, and B. D. Seckler, “Asymptotic solution of some diffraction problems,” Comm. Pure Appl. Math., 9: 2 (1956).MathSciNetGoogle Scholar
  20. [19]
    J. B. Keller, Diffraction by a Convex Cylinder, I.R.E. Transactions, AP-4: 312 (1956).Google Scholar
  21. [20]
    J. B. Keller, “Diffraction by an aperture,” J. Appl. Phys., 28: 426 (1957).CrossRefMATHMathSciNetGoogle Scholar
  22. [21]
    J. B. Keller, R. M. Lewis, and B. D. Seckler, “Diffraction by an aperture II,” J. Appl. Phys., 28: 570 (1957).CrossRefMATHMathSciNetGoogle Scholar
  23. [22]
    J. B. Keller, “Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems,” Annals of Physics, 4: 180(1958).CrossRefMATHMathSciNetGoogle Scholar
  24. [23]
    J. B. Keller and B. R. Levy, Decay Exponents and Diffraction Coefficients for Surface Waves on Surfaces of Nonconstant Curvature, I.R.E. Transactions, AP-7: Special Supplement (1959).Google Scholar
  25. [24]
    J. B. Keller, Backscattering from a Finite Cone, I.R.E. Transactions, AP-8: 175 (1960).Google Scholar
  26. [25]
    J. B. Keller and F. C. Karal, “Surface wave excitation and propagation,” J. Appl. Phys., 31: 1039, (1960).CrossRefMathSciNetGoogle Scholar
  27. [26]
    J. B. Keller and S. I. Rubinow, “Asymptotic solutions of eigenvalue problems,” Annals of Physics, 9: 24 (1960).CrossRefMATHGoogle Scholar
  28. [27]
    M. Kline, “An asymptotic solution of Maxwell’s equations,” Comm. Pure Appl. Math., 4: 225 (1951).CrossRefMATHMathSciNetGoogle Scholar
  29. [28]
    M. Kline, “Asymptotic solutions of linear hyperbolic partial differential equations,” J. Rat. Mech. Anal, 3: 315 (1954).MATHMathSciNetGoogle Scholar
  30. [29]
    B. R. Levy and J. B. Keller, “Diffraction by a smooth object,” Comm. Pure Appl Math., 12: 159 (1959).CrossRefMathSciNetGoogle Scholar
  31. [30]
    B. R. Levy and J. B. Keller, “Diffraction by a spheroid,” Can. J. Phys., 38: 128 (1960).CrossRefMATHMathSciNetGoogle Scholar
  32. [31]
    B. R. Levy, “Diffraction by an elliptic cylinder,” J. Math. and Meck., 9: 147 (1960).MATHGoogle Scholar
  33. [32]
    R. M. Lewis, “Asymptotic expansion of steady-state solutions of symmetric hyperbolic linear differential equations,” J. Math, and Mech., 7: 593 (1958).MATHMathSciNetGoogle Scholar
  34. [33]
    D. Ludwig, “Exact and asymptotic solutions of the Cauchy problem,” Comm. Pure Appl. Math., 13: 473 (1960).CrossRefMATHMathSciNetGoogle Scholar
  35. [34]
    R. K. Luneburg, The Mathematical Theory of Optics, Lecture Notes, Brown University, 1944; re-published by Univ. Calif. Press, Los Angeles 1964. Propagation of Electromagnetic Waves, Lecture Notes, New York University (1948).Google Scholar
  36. [35]
    C. Schensted, “Electromagnetic and acoustic scattering by a semi-infinite body of revolution” J. Appl. Phys., 26: 306 (1955).CrossRefMATHMathSciNetGoogle Scholar
  37. [36]
    B. D. Seckler and J. B. Keller, “Geometrical theory of diffraction in inhomogeneous media,” J. Acoust. Soc. Amer., 31: 192 (1959).CrossRefMathSciNetGoogle Scholar
  38. [37]
    B. D. Seckler and J. B. Keller, “Asymptotic theory of diffraction in inhomogeneous media,” J. Acoust. Soc. Amer., 31: 206(1959).CrossRefMathSciNetGoogle Scholar
  39. [38]
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).MATHGoogle Scholar
  40. [39]
    G. B. Whitham, “Group velocity and energy propagation for three dimensional waves,” Comm. Pure Appl. Math., 14: 675 (1961).CrossRefMATHMathSciNetGoogle Scholar
  41. [40]
    M. Kline, Electromagnetic Theory and Geometrical Optics, N.Y.U., EM Div., Research Report EM-171 (1962).Google Scholar
  42. [41]
    E. Zauderer, Wave Propagation around a Smooth Object, N.Y.U., EM Div., Research Report (EL-6).Google Scholar
  43. [42]
    A. J. W. Sommerfeld, Optics: Academic Press, Inc., New York (1954).MATHGoogle Scholar
  44. [43]
    P. D. Lax, “Asymptotic solutions of oscillatory initial value problems,” Duke Math. J., 24: 627, (1957).CrossRefMATHMathSciNetGoogle Scholar
  45. [44]
    J. J. Stoker, Differential Geometry, Wiley-Interscience, New York, (1969).MATHGoogle Scholar
  46. [45]
    R. C. Hansen, ed., Geometric Theory of Diffraction, IEEE Press, New York (1981).Google Scholar
  47. [46]
    S. Cornbleet, “Geometrical optics reviewed: a new light on an old subject,” Proc. IEEE, 71: 471 (1986).CrossRefGoogle Scholar
  48. [47]
    J. M. Arnold, “Geometrical theories of wave propagation: a contemporary review,” Proc. IEEE (J), 133: 165 (1986).Google Scholar
  49. [48]
    Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer, New York, (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joseph B. Keller
    • 1
  • Robert M. Lewis
    • 2
  1. 1.Departments of Mathematics and Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations