Calcium Dependent Regulation of Conformational Change in the SH2 Region of Skeletal Myosin

  • Tsuneo Kameyama

Abstract

Due to the finding of troponin,1,2 actin-linked Ca2+-dependent regulatory mechanism of muscle contraction was established.

Keywords

Conformational Change ATPase Activity Myosin Head Myosin ATPase Myosin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ebashi, Third component participating in the superprecipitation of natural actomyosin, Nature 200: 1010 (1963).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Ebashi, The Croonian Lecture, 1979. Regulation of muscle contraction, Proc. R. Soc. London. Ser. B 270: 259 (1980).CrossRefGoogle Scholar
  3. 3.
    A. G. Szent-Györgyi, E. M. Szentkiralyi, and J. Kendrick-Jones, The light chains of scallop myosin as regulatory subunits, J. Mol. Biol. 74: 179 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Kendrick-Jones, Role of myosin light chains in calcium regulation, Nature 249: 631 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    E. A. Sugden and T. Nihei, The effects of calcium and magnesium ions on the adenosine triphosphatase and inosine triphosphatase activities of myosin A, Biochem. J. 113: 821 (1969).PubMedGoogle Scholar
  6. 6.
    K. Morimoto and W. F. Harrington, Evidence for structural changes in vertebrate thick filaments induced by calcium, J. Mol. Biol. 88: 693 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    M. M. Werber and A. Oplatka, Physico-chemical studies on the light chains of myosin. III. Evidence for a regulatory role of a rabbit myosin light chain, Biochem. Biophys. Res. Commun. 57: 823 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    J. C. Haselgrove, X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle, J. Mol. Biol. 92: 113 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    S. S. Margossian, S. Lowey, and B. Barshop, Effect of DTNB light chain on the interaction of vertebrate skeletal myosin with actin, Nature 258: 163 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Lehman, Thick-filament-linked calcium regulation in vertebrate striated muscle, Nature 274: 80 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    G. D. Rieser, R. A. Sabbadini, and P. J. Paolini, Calcium and pH-induced structural changes in skinned muscle fibers: Prevention by N-ethylmaleimide, Biochem. Biophys. Res. Commun. 90: 179 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    R. A. Sabbadini, G. D. Rieser, and P. J. Paolini, Calcium-induced structural changes in chemically skinned muscle fibers: Detection by optical diffractometry, Biochim. Biophys. Acta 578: 526 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Kameyama, M. Komatsu, and T. Sekine, Actin-induced local conformational change in the myosin molecule. III. Reactivity of S2 thiol and DTNB-reactive thiols of porcine cardiac myosin, J. Biochem. 87: 587 (1980).PubMedGoogle Scholar
  14. 14.
    T. Kameyama, Calcium regulation of the conformational change around a specific thiol group, SH2, of skeletal myosin, Proc. Jpn. Acad. Ser. B 58: 191 (1982).CrossRefGoogle Scholar
  15. 15.
    T. Sekine and M. Yamaguchi, Effect of ATP on the binding of N-ethylmaleimide to SH groups in the active site of myosin ATPase. J. Biochem. 54: 196 (1963).Google Scholar
  16. 16.
    T. Sekine and W. W. Kielley, The enzymic properties of Nethylmaleimide modified myosin, Biochim. Biophys. Acta 81: 336 (1964).Google Scholar
  17. 17.
    M. Yamaguchi and T. Sekine, Sulfhydryl groups involved in the active site of myosin A adenosine triphosphatase. I. Specific blocking of the SH group responsible for the inhibitory phase in “biphasic response of the catalytic activity”, J. Biochem. 59: 24 (1966).Google Scholar
  18. 18.
    T. Yamashita, Y. Soma, S. Kobayashi, T. Sekine, K. Titani, and K. Narita, The amino acid sequence at the active site of myosin A adenosine triphosphatase activated by EDTA, J. Biochem. 55: 576 (1964).PubMedGoogle Scholar
  19. 19.
    T. Yamashita, Y. Soma, S. Kobayashi, and T. Sekine, The amino acid sequence of SH-peptides involved in the active site of myosin A adenosinetriphosphatase, J. Biochem. 75: 447 (1974).PubMedGoogle Scholar
  20. 20.
    T. Sekine, K. A. Kato, K. Takamori, M. Machida, and Y. Kanaoka, Fluorescent thiol reagents. X. Fluorimetric estimation of the reactivity of thiols: Examples in small molecular compounds, Taka-amylase A and myosin A, Biochim. Biophys. Acta 354: 139 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Kameyama, T. Katori, and T. Sekine, Actin-induced local conformational change in the myosin molecule. I. Effect of metal ions and nucleotides on the conformational change around a specific thiol group(S2) of heavy meromyosin, J. Biochem. 81: 709 (1977).PubMedGoogle Scholar
  22. 22.
    T. Kameyama, Actin-induced local conformational change in the myosin molecule. II. Conformational change around the S2 thiol group related to the essential intermediate of ATP hydrolysis, J. Biochem. 87: 581 (1980).PubMedGoogle Scholar
  23. 23.
    K. Sutoh, Location of SH1 and SH2 along a heavy chain of myosin subfragment 1, Biochemistry 20: 3281 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Sekine and M. Yamaguchi, Superprecipitation of actomyosin reconstructed with F-actin and NEM-modified myosin, J. Biochem. 59: 195 (1966).PubMedGoogle Scholar
  25. 25.
    S. Srivastava and J. Wikman-Coffelt, An investigation into the role of SH1 and SH2 groups of myosin in calcium binding and tension generation, Biochem. Biophys. Res. Commun. 92: 1383 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    W. W. Kielley and L. B. Bradely, The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase, J. Biol. Chem. 218: 653 (1956).PubMedGoogle Scholar
  27. 27.
    Y. Ogawa, The apparent binding constant of glycoletherdiaminetetraacetic acid for calcium at neutral pH, J. Biochem. 64: 255 (1968).PubMedGoogle Scholar
  28. 28.
    C. H. Fiske and Y. SubbaRow, The colorimetric determination of phosphorus, J. Biol. Chem. 66: 375 (1925).Google Scholar
  29. 29.
    S. V. Perry, [94] Myosin adenosinetriphosphatase, in “Methods in Enzymology, Vol. 2” S. P. Colowick and N. 0. Kaplan, ed., Academic Press, New York (1955).Google Scholar
  30. 30.
    M. Takenaka, M. Ikehara, and Y. Tonomura, Structure and function of myosin molecule. IV. Physiological functions of various reaction intermediates in myosin adenosinetriphosphatase, studied by the interaction between actomyosin and 8-Bromoadenosinetriphosphate, J. Biochem. 80: 1381 (1976).PubMedGoogle Scholar
  31. 31.
    T. Kameyama, Submitted for publication.Google Scholar
  32. 32.
    T. Yamashita, M. Kobayashi, and T. Horigome, The sulfhydryl groups involved in the active site of myosin B adenosinetriphosphatase, J. Biochem. 77: 1037 (1975).PubMedGoogle Scholar
  33. 33.
    T. Horigome and T. Yamashita, The sulfhydryl groups involved in active site of myosin B adenosinetriphosphatase. IV. Structure around the Sa thiol group, J. Biochem. 83: 49 (1978).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Tsuneo Kameyama
    • 1
  1. 1.Department of BiochemistrySchool of Medicine Juntendo UniversityTokyo, 113Japan

Personalised recommendations