Band 3 Protein-Mediated Anion Transport Across the Red Cell Membrane: The Site of Action of the Inhibitors, 4,4′-DI Isothiocyano Dihydrostilbene-2,2′-Disulfonate (H2DIDS) and 1-Fluoro-2,4-Dinitrobenzene (N2ph-F)

  • H. Passow
  • L. Kampmann
  • S. Lepke

Abstract

Like all other cells, the red blood cells are surrounded by a hydrophobic lipid bilayer that is virtually impermeable for hydro-philic anions such as HCO 3 and Cl. Nevertheless, the HCO 3 -Cl exchange that constitutes an important step in CO2 transport by the blood, is completed within the short time that the red cells pass through the capillary bed of the peripheral tissues or the lung (less than one second). Hence there must exist a transport system that facilitates the anion exchange across the bilayer. This transport system consists of one of the most abundant integral membrane proteins of the red blood cell membrane, the so-called band 3 protein (Cabantchik and Rothstein, 1974; Passow, Fasold, Zaki, Schuhmann and Lepke, 1975).

Keywords

Lysine Residue Peptide Chain Anion Transport Substrate Binding Site Anion Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabantchik, Z.I., Volsky, D.J., Ginsburg, H., Loyter, A. (1980) Ann. New York Acad. Sci. 341: 444–454CrossRefGoogle Scholar
  2. Cabantchik, Z.I., Knauf, P.A., Rothstein, A. (1978) Biochim. Biophys. Acta 515: 239–302PubMedCrossRefGoogle Scholar
  3. Cabantchik, Z.I., Rothstein, A. (1974) J. Membrane Biol. 15: 207–226CrossRefGoogle Scholar
  4. Cantley, L.C. and Macara, I.G. (1982) submitted for publicationGoogle Scholar
  5. Dorst, H.-J. and Schubert, D. (1979) Hoppe Seylers Z. Physiol. Chem. 360: 1605–1618PubMedCrossRefGoogle Scholar
  6. Drickamer, K. (1980) Ann. New York Acad. Sci. 341: 419–432CrossRefGoogle Scholar
  7. Fröhlich, O. (1982), J. Membrane Biol. 65: 111–123CrossRefGoogle Scholar
  8. Grinstein, S., Ship, S., Rothstein, A. (1978) Biochim. Biophys. Acta, 507: 294–304PubMedCrossRefGoogle Scholar
  9. Harris, E.J. and Pressman, B.C. (1967), Nature 216: 918–919PubMedCrossRefGoogle Scholar
  10. Herbst, F. and Rudloff, V. (1982) “Protides of the Biological Fluids,” 113–116, Pergamon Press, Oxford, H. Peters, ed.Google Scholar
  11. Hunter, M.J. (1971) J. Physiol. 218: 49P - 50 PPubMedGoogle Scholar
  12. Jenkins, R.E. and Tanner, M.J.A. (1977) Biochem. J. 161: 139–147PubMedGoogle Scholar
  13. Jennings, M.L. and Passow, H. (1979) Biochim. Biophys. Acta 554: 498–519PubMedCrossRefGoogle Scholar
  14. Jennings, M.L. (1982) J. Biol. Chem. 257: 7554–7559PubMedGoogle Scholar
  15. Kampmann, L., Lepke, S., Fritzsch, G., Fasold, H., Passow, H. (1982) J. Membrane Biol. In the press.Google Scholar
  16. Kaplan, J.H., Pring, M., Passow, H. (1980) in: “Membrane Transport in Erythrocytes,” Alfred Benzon Symp. 14: 494–497Google Scholar
  17. Munksgaard, Copenhagen, U.V. Lassen, H.H. Ussing, J.O. Wieth, eds.Google Scholar
  18. Knauf, P.A. (1979) Current Topics in Membrane Transport, 12: 248–263Google Scholar
  19. Knauf, P.A. (1982) in “Membranes and Transport,” Vol. 2, A.N. Martonosi, ed. Plenum Press, New York and London, pp. 441–449Google Scholar
  20. Knauf, P.A., Law, F.Y. (1980) in: “Membrane Transport in Erythrocytes,” Alfred Benzon Symp. 14: 488–493, U. V. Lassen H.H. Ussing, J. O. Wieth, eds., MunksgaardGoogle Scholar
  21. Köhne, W., Haest,C.W.M. and Deuticke, B. (1981) Biochim. Biophys. Acta, 664: 108–120CrossRefGoogle Scholar
  22. Lepke, S. and Passow, H. (1976) Biochim. Biophys. Acta, 455: 353–370PubMedCrossRefGoogle Scholar
  23. Lepke, S., Fasold, H., Pring, M., Passow, H. (1976), J. Membrane Biol., 29: 147–177CrossRefGoogle Scholar
  24. Lepke, S. and Passow, H. (1982) to be submitted for publication.Google Scholar
  25. Macara, I.G. and Cantley, L.C. (1981) Biochemistry, 20: 5095–5105PubMedCrossRefGoogle Scholar
  26. Margaritis, L.H., Elgsaeter, A. and Branton, D. (1977), J. Cell Biol., 72: 47–56PubMedCrossRefGoogle Scholar
  27. Mawby, W.J. and Findlay, (1982) Biochem. J. 205: 465–475PubMedGoogle Scholar
  28. Pappert, G. and Schubert, D. (1982) in: “Protides of the Biological Fluids,” H. Peeters, ed., 29: 117–120Google Scholar
  29. Passow, H., Fasold, H., Gärtner, E.M., Legrum, B., Ruffing, W., Zaki, L. (1980a) Ann. New York Acad. Sci., 341: 361–383CrossRefGoogle Scholar
  30. Passow, H. (1982) in: “Membranes and Transport,” Vol. 2, A.N. Martonosi, ed. Plenum Press, New York and London, pp. 451–460Google Scholar
  31. Passow, H., Fasold, H., Jennings, M.L., Lepke, S. (1982) in: “Chloride Transport in Biological Membranes,” J.A. Zadunaisky, ed. Academic Press, New York, pp. 1–31.Google Scholar
  32. Passow, H. (1979) in: “Cell Membrane Receptors for Drugs and Hormones,” R.W. Straub and L. Bolis, eds. Raven Press, New York, pp. 203–218Google Scholar
  33. Passow, H., Fasold, H., Zaki, L., Schuhmann, B., Lepke, S. (1975) in: “Biomembranes: Structure and Function,” G. Gârdos, I. Szâsz, eds. pp. 197–214, North Holland, Amsterdam and the Publishing House of the Hungarian Academy of Sciences.Google Scholar
  34. Passow, H., Fasold, H., Lepke, S., Pring, H. and Schumann, B. (1977) in: “Membrane Toxicity,” M.W Miller and A. Shamoo, eds., pp. 353–377, Plenum Press, New YorkGoogle Scholar
  35. Passow, H., Kampmann, L., Fasold, H., Jennings, M., Lepke, S. (1980b) in: “Membrane Transport in Erythrocytes,” Alfred Benzon Symp. 14, 345–367, U.V. Lassen, H.H. Ussing, J.O. Wieth, eds. Munksgaard, Copenhagen. pp. 345–367Google Scholar
  36. Peters, R., Peters, J., Tews, K.H., Böhr, W. (1974) Biochim. Biophys. Acta 367: 282–294PubMedCrossRefGoogle Scholar
  37. Peters, R., (1981) Cell Biol. International Reports, 5: 733–760CrossRefGoogle Scholar
  38. Rao, A. and Reithmeier, A.F. (1979) J. Biol. Chem., 254: 6144–6150PubMedGoogle Scholar
  39. Rothstein, A. (1982) in: “Membrane Transport,” Vol. II, A. Martonosi, ed. 435–440, Plenum, New York and LondonGoogle Scholar
  40. Rothstein, A., Ramjeesingh, Grinstein, S., Knauf, P.A. (1980) Ann. New York Acad. Sci., 341: 433–443CrossRefGoogle Scholar
  41. Scarpa, A., Cecchetto, A., Azzone, G.F. (1970) Biochim. Biophys. Acta 219: 179–188PubMedCrossRefGoogle Scholar
  42. Shami, Y., Rothstein, A., Knauf, P.A., McCulloch, L. (1978) Biochim. Biophys. Acta, 508: 357–363PubMedCrossRefGoogle Scholar
  43. Schubert, D. and Domning, B. (1978) Hoppe Seyler’s J. Physiol. Chem., 359: 507–515Google Scholar
  44. Ship, S., Shami, Y., Breuer, W., Rothstein, A. (1977) J. Membrane Biol., 33: 311–323CrossRefGoogle Scholar
  45. Steck, T.L. (1978) J. Supramol. Structure 8: 311–324CrossRefGoogle Scholar
  46. Steck, T.L. Ramos, B., Strapazon, E. (1976) Biochemistry, 14: 1154–1161CrossRefGoogle Scholar
  47. Steck, T.L. Koziarz, J.J., Singh, M.K., Reddy, G., Köhler, H (1978) Biochemistry 27: 1216–1222CrossRefGoogle Scholar
  48. Tanford, C. (1962) Advances in Protein Chemistry, 17: 69–165, C.B. Anfinsen and J.T. Edsall, eds., Academic Press, New YorkGoogle Scholar
  49. Tanner, M.J.A., Williams, D.G., Jenkins, R.E. (1980) Ann. N.Y. Acad. Sci., 341: 455–464PubMedCrossRefGoogle Scholar
  50. Wieth, J.O., Bjerrum, P.J. and Borders, C.L., (1982) J. Gen.Physiol., 79: 283–312PubMedCrossRefGoogle Scholar
  51. Wieth, J.O. and Bjerrum.J. (1982) J. Gen. Physiol. 79: 253–282PubMedCrossRefGoogle Scholar
  52. Wieth, J.O., Bjerrum, P.J., Brahm, J. and Andersen, O.S. (1982). Tokai J. Exp. Clin. Med. In the pressGoogle Scholar
  53. Zaki, L. (1981) Biochim. Biophys. Res. Comm., 99: 243–251CrossRefGoogle Scholar
  54. Zaki, L. (1982) in: “Protides of the Biological Fluids, H. Peeters, ed. Pergamon Press, Oxford, pp. 279–282Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • H. Passow
    • 1
  • L. Kampmann
    • 1
  • S. Lepke
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt am MainFed. Rep. of Germany

Personalised recommendations