Transport of Binary and Ternary Electrolytes through Charged Membranes with Allowance for Interactions

  • F. Ludwików
  • M. Bartoszkiewicz
  • S. Miekisz

Abstract

One of the fundamental problems in theoretical description of substance transport through membranes treated as a separate bulk phase is to decide on the character and way of description of interactions between the permeating components and the membrane as well as among the components. Specification of the assumptions on the character of the interactions determines transport properties of the membrane-permeating solution system and is fundamental for any membrane transport model. Allowance for interactions, particularly electrostatic and non-electrostatic in the case of electrolytes, is connected with many difficulties if we want to go through the difficult road from the potentials of molecular interactions to averaged quantities and macroscopic equations of transport. Such an approach has been followed by many authors1–5. As it often occurs in this type of models, the starting point is quite general. The final result, however, if given in an analytic form, is restricted by a series of additional simplifying assumptions and is thus much less general.

Keywords

Membrane Transport Strong Electric Field Hydration Number Charged Membrane Membrane Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Schröter and G. West, Annalen der Physik, 7 Folge, 32: 19 (1975).CrossRefGoogle Scholar
  2. 2.
    J. Schröter and G. West, Annalen der Physik, 7 Folge, 32: 33 (1975).CrossRefGoogle Scholar
  3. 3.
    J. Schröter and G. West, Annalen der Physik, 7 Folge, 32: 227 (1975).CrossRefGoogle Scholar
  4. 4.
    G. West, A. Grauel and J. Schröter, Annalen der Physik, 7 Folge, 33: 125 (1976).CrossRefGoogle Scholar
  5. 5.
    R. J. Bearman and J. G. Kirkwood, J. Chem. Phys. 28: 136 (1958).CrossRefGoogle Scholar
  6. 6.
    G. S. Manning, J. Chem. Phys. 49: 2668 (1968).CrossRefGoogle Scholar
  7. 7.
    G. S. Manning, J. Phys. Chem. 76: 393 (1972).CrossRefGoogle Scholar
  8. 8.
    G. S. Manning, in: “Biophysics of Membrane Transport School Proceedings, Part II”, S. Migkisz and W. Gomulkiewicz, eds., Wroclaw (1974).Google Scholar
  9. 9.
    Yu. A. Chizmadjev and S. K. Aityan, in: “Biophysics of Membrane Transport, Part III”, S. Migkisz and W. Gomulkiewicz, eds., Wroclaw (1974).Google Scholar
  10. 10.
    Y. Kobatake, J. Chem. Phys. 28: 146 (1958).CrossRefGoogle Scholar
  11. 11.
    Y. Kobatake, N. Takeguchi, Y. Toyoshima and H. Fujita, J. Phys. Chem. 69: 3981 (1965).CrossRefGoogle Scholar
  12. 12.
    Y. Kobatake, Y. Toyoshima and N. Takeguchi, J. Phys. Chem. 70: 1187 (1966).CrossRefGoogle Scholar
  13. 13.
    F. Ludwików, “Transport of binary and ternary electrolytes through charged membranes with allowance for interactions”, Unpublished (1976).Google Scholar
  14. 14.
    G. A. Korn and T. M. Korn, “Mathematical Handbook for Scientists and Engineers”, Mc Graw-Hill, New York (1976).Google Scholar
  15. 15.
    F. Ludwików, “Transport of binary and ternary electrolytes through charged membranes with allowance for interactions. II. General Model”, in preparation for publication.Google Scholar
  16. 16.
    B. Baranowski and A. S. Cukrowski, Z. phys. Chem. 228: 292 (1965).Google Scholar
  17. 17.
    D. G. Miller, J. Phys. Chem. 70: 2639 (1966).CrossRefGoogle Scholar
  18. 18.
    D. G. Miller, J. Phys. Chem. 71: 616 (1967).CrossRefGoogle Scholar
  19. 19.
    D. G. Miller, J. Phys. Chem. 71: 3558 (1967).Google Scholar
  20. 20.
    D. D. Fitts, “Nonequilibrium Thermodynamics”, Mc Graw-Hill, New York (1962).Google Scholar
  21. 21.
    E. Endom, H. Hertz, B. Thül and M. Zeidler, Ber. Bunsenges. Phys. Chem. 71: 1008 (1967).Google Scholar
  22. 22.
    H. Hertz, Ber. Bunsenges. Phys. Chem. 75: 183, 572 (1971).Google Scholar
  23. 23.
    H. Hertz, K. Harris, R. Mills and L. Wolf, Ber. Bunsenges. Phys. Chem. 81: 664 (1977).CrossRefGoogle Scholar
  24. 24.
    F. Ludwików, “Transport of binary and ternary electrolytes through charged membranes with allowance for interactions. I. Relationship between the Onsager transport coefficients and the self-diffusion coefficients, transport and hydration numbers”, in preparation for publication.Google Scholar
  25. 25.
    R. A. Robinson and R. H. Stokes, “Electrolyte Solutions”, Butterworths Scientific Publications, London (1959).Google Scholar
  26. 26.
    B. Neumcke, D. Walz and P. Läuger, Biophys. J. 10: 172 (1970).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Onsager, J. Chem. Phys. 2: 599 (1934).CrossRefGoogle Scholar
  28. 28.
    L. Onsager and S. K. Kim, J. Phys. Chem. 61: 198 (1957).CrossRefGoogle Scholar
  29. 29.
    L. Onsager and S. K. Kim, J. Phys. Chem. 61: 215 (1957).CrossRefGoogle Scholar
  30. 30.
    F. Ludwików, A. Albiniak and A. Marszalek, “Transport of binary electrolytes through charged membranes with allowance for interactions. II. Case of no chemical reaction”, in preparation for publication.Google Scholar
  31. 31.
    F. Ludwików, M. Wierzchaczewski and S. Miekisz, “Stationary State Analysis of Equations for Transport of Binary Electrolytes across charged Membranes”, Energetics and Regulation of Membrane Transport, Praha-Zvikovske Podhradi, 1–4. 10. 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • F. Ludwików
    • 1
  • M. Bartoszkiewicz
    • 1
  • S. Miekisz
    • 1
  1. 1.Department of BiophysicsMedical SchoolWrocławPoland

Personalised recommendations