Hydration and Thermotransition of Collagen Fibre

  • Jizhen Zhang
  • Zhenglian Zhang
  • Wending Zhang
  • Yazhen Fu
  • Guohue Ye
  • Zeling Nin

Abstract

The hydration and thermotransition behaviours of bovine achilles tendon collagen (BAT) in the water content range of 0.023 to 13 g/g have been studied by differential scanning calorimetry (DSC). The results are discussed in terms of seven steps involving different states of water and their effects on the fibrous structure and its thermotransition. For collagen without water, neither melting nor thermotransition can occur. For BAT with two water molecules per every three residues its crystallinity is complete. Every three residues contains 1.78 intramolecular H bonds. ∆HH is equal to 1.43 Kcal/mole, and Ttr is not more than 376 K. The rest of the water has no effect on the melting of the molecule. We propose that the thermotransition of collagen swollen in water involves melting of the molecule and the gradual disengagement of molecular and fibrous structure; the enthalpy values in the three processes being 0.85, 0.52, and 0.36 Kcal/mole of residue. The transition temperature is not more than 332 K. We argue that water is an essential factor in the formation of intramolecular H bond and crystallinity of the molecule. The term “melting phase transition” usually used to describe collagen to gelatin transition or thermal shrinkage of collagen fibre, seems to be inaccurate and misleading. A proposal for the mechanism of the thermotransition of collagen fibre is made. The stability of collagen may depend on factors inherent at all levels of native conformational structure.

Keywords

Differential Scanning Calorimetry Collagen Fibre Sharp Peak Fibrous Structure Thermal Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K. H. Gustayson, “The Chemistry and Reactivity of Collagen,” Academic Press, New York (1956).Google Scholar
  2. (2).
    W. Traub and K. A. Piez, Adv. Protein Chem. 25: 243 (1971).PubMedCrossRefGoogle Scholar
  3. (3).
    W. F. Harrington and P. H. von Hippel, Adv. Protein Chem. 16: 1 (1961).PubMedCrossRefGoogle Scholar
  4. (4).
    G. N. Ramachandran, in: “Treatise on Collagen,” Vol 1, p. 103, Academic Press, New York (1967).Google Scholar
  5. (5).
    P. H. Von Hippel, in: “Treatise on Collagen,” Vol. 1, p. 253, G. N. Ramachandran, ed., Academic Press, New York (1967).Google Scholar
  6. (6).
    P. Bornstein and W. Traub, in: “The Proteins,” Vol. 4, p. 411, H. Neurath and R. L. Hill, eds., Academic Press, New York (1979).Google Scholar
  7. (7).
    P. L. Privalov, in: “ Biological Microcalorimetry,” p. 413, A. E. Beezer, ed., Academic Press, London (1980).Google Scholar
  8. (8).
    R. R. Garrett and P. I. Flory, Nature 177: 176 (1956).CrossRefGoogle Scholar
  9. (9).
    P. J. Flory and R. R. Garrett, J. Am. Chem. Soc. 80: 4836 (1958).CrossRefGoogle Scholar
  10. (10).
    A. Veis, in: “Treatise on Collagen,” Vol. 1, p. 367, G. N. Ramachandran, ed., Academic Press, New York (1967).Google Scholar
  11. (11).
    P. L. Privalov and E. I. Tiktopulo, Biopolymers 9: 127 (1970).PubMedCrossRefGoogle Scholar
  12. (12).
    P. L. Privalov and E. I. Tiktopulo, Biofzika 13: 955 (1968).Google Scholar
  13. (13).
    A. Rich and F. H. C. Crick, Nature 176: 915 (1955).PubMedCrossRefGoogle Scholar
  14. (14).
    A. Rich and F. H. C. Crick, J. Mol. Biol. 3: 483 (1961).PubMedCrossRefGoogle Scholar
  15. (15).
    G. N. Ramachandran and G. Kartha, Nature 176: 593 (1955).PubMedCrossRefGoogle Scholar
  16. (16).
    G. N. Ramachandran and V. Sasisekharan, Biochim. Biophys. Acta 109: 314 (1965).PubMedCrossRefGoogle Scholar
  17. (17).
    G. N. Ramachandran and R. Chandrasekharan, Biopolymers 6: 1649 (1968).PubMedCrossRefGoogle Scholar
  18. (18).
    P. L. Privalov, E. I. Tiktopulo and V. M. Tischenko, J. Mol. Biol. 127: 203 (1979).PubMedCrossRefGoogle Scholar
  19. (19).
    A. Cooper, J. Mol. Biol. 55: 123 (1971).PubMedCrossRefGoogle Scholar
  20. (20).
    E. L. Andronikashvili, G. M. Mrevlishvili, G. Sh. Japaridze, V. M. Sokhadze and K. A. Kvavadz, Biopolymers 15: 1991 (1976).CrossRefGoogle Scholar
  21. (21).
    S. Menashi, A. Finch, P. I. Gardner and D. A. Ledward, Biochim. Biophys. Acta 444: 623 (1976).PubMedCrossRefGoogle Scholar
  22. (22).
    A. Finch and D. A. Ledward, Biochim. Biophys. Acta 278: 433 (1972).PubMedCrossRefGoogle Scholar
  23. (23).
    A. Finch and D. A. Ledward, Biochim. Biophys. Acta 295: 296 (1973).PubMedCrossRefGoogle Scholar
  24. (24).
    A. Finch, P. J. Gardner, D. A. Ledward and S. Menashi, Biochim. Biophys. Acta 365: 400 (1974)PubMedCrossRefGoogle Scholar
  25. (25).
    M. Luescher, M. Rüegg and P. Schindler, Biopolymers 13: 2489 (1974).PubMedCrossRefGoogle Scholar
  26. (26).
    P. E. Mc Clain and E. R. Wiley, J. Biol. Chem. 247: 692 (1972).PubMedGoogle Scholar
  27. (27).
    W. F. Harrington, J. Mol. Biol. 9: 613 (1964)PubMedCrossRefGoogle Scholar
  28. (28).
    C. DeLisi and M. H. Shamos, J. Polymer. Sci. Pt. A 10: 673 (1972).CrossRefGoogle Scholar
  29. (29).
    P. Doty and T. Nishihara, in: “ Recent Advances in Gelatin and Glue Research,” p. 92, G. Stainsby, ed., Pergamon Press, London (1958).Google Scholar
  30. (30).
    B. J. Rigby, Biochim. Biophys. Acta 133: 272 (1967).PubMedCrossRefGoogle Scholar
  31. (31).
    J. Einbinder and M. Schubert, J. Biol. Chem. 188: 335 (1951).PubMedGoogle Scholar
  32. (32).
    D. R. Monaselidze and N. G. Bakradze, Dokl. Akad. Nauka USSR 189: 899 (1969).Google Scholar
  33. (33).
    E. L. Andronikashvili, D. R. Monaselide, N. D. Bakradze and R. S. Svanidze, in: „Konformatsionnie Izmeneniya Biopolymerov v Rastvorakr,“ p. 164, E. L. Andronikashvili, ed., Nauka Publishing House, Moscow (1973).Google Scholar
  34. (34).
    A. R. Haly and J. W. Snaith, Biopolymers 10: 1681 (1971).PubMedCrossRefGoogle Scholar
  35. (35).
    J. Z. Zhang, Z. L. Zhang and W. D. Zhang, in preparation.Google Scholar
  36. (36).
    W. F. Harrington and P. H. von Hippel, Arch. Biochem. Biophys. 92: 100 (1961).PubMedCrossRefGoogle Scholar
  37. (37).
    R. Y. Yee, S. W. Englander and P. H. von Hippel, J. Mol. Biol. 83: 1 (1974).PubMedCrossRefGoogle Scholar
  38. (38).
    H. A. Scheraga, in: “The Proteins,” Vol. 1, p. 477, H. Neurath, ed., Academic Press, New York (1963).Google Scholar
  39. (39).
    H. Susi, J. S. Ard and J. R. Carroll, Biopolymers 10: 1597 (1971).PubMedCrossRefGoogle Scholar
  40. (40).
    J. E. Eastoe, in: “Treatise on Collagen,” Vol. 1, p. 1, G. N. Ramachandran, ed., Academic Press, New York (1967).Google Scholar
  41. (41).
    P. L. Privalov and E. I. Tiktopulo, Biofizika 14: 20 (1969).PubMedGoogle Scholar
  42. (42).
    D. R. Monaselide and N. D. Bakradze, Dokl. Akad. Nauka USSR 183: 1205 (1968)Google Scholar
  43. (43).
    E. L. Andronikashvili, Biofizika 17: 1068 (1972).PubMedGoogle Scholar
  44. (44).
    E. L. Andronikashvili, D. R. Monaselidze, N. G. Bakradze, Z. L. Chanchalashvili, G. M. Mgeladze, E. L. Mikadze and G. M. Mrevlishvili, in: “ Konformatsionnie Izmeneniya Biopolymerov v Rastvorakh,” p. 171, E. L. Andronikashvili, ed., Nauka Publishing House, Moscow (1973).Google Scholar
  45. (45).
    J. Engel, Arch. Biochem. Biophys. 97: 150 (1962).CrossRefGoogle Scholar
  46. (46).
    J. Z. Zhang and W. D. Zhang, in preparation.Google Scholar
  47. (47).
    H. Boedtker and P. Doty, J. Am. Chem. Soc. 78: 4267 (1957).CrossRefGoogle Scholar
  48. (48).
    K. G. A. Pankhurst, Nature 159: 538 (1947).PubMedCrossRefGoogle Scholar
  49. (49).
    C. E. Weir, J. Amer. Leather. Chem. Assoc. 44: 108 (1949).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Jizhen Zhang
    • 1
  • Zhenglian Zhang
    • 1
  • Wending Zhang
    • 1
  • Yazhen Fu
    • 1
  • Guohue Ye
    • 1
  • Zeling Nin
    • 1
  1. 1.Institute of BiophysicsAcademia SinicaBeijingChina

Personalised recommendations