Photovoltaic Behavior of Junctions

  • Kasturi Lal Chopra
  • Suhit Ranjan Das

Abstract

As noted in Chapter 2, a generalized photovoltaic device is composed of three functional elements, namely, an absorber, a junction region or converter, and a collector. A description of the basic physical processes that may occur in the absorber/generator was given in Chapter 2. In this chapter, we focus our attention on the converter/junction region. Our main interest is to gain a clear perception of the physics underlying solar cell operation. Throughout the text, therefore, the emphasis will be on a qualitative discussion of the physical effects, rather than on quantitative derivations. Accordingly, except in specific cases, we shall present only the final equations and refer the reader to the appropriate literature for the rigorous theory.

Keywords

Solar Cell Minority Carrier Minority Carrier Lifetime Insulator Thickness Heterojunction Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Sze,Physics of Semiconductor Devices, John Wiley and Sons Inc., New York (1969).Google Scholar
  2. 2.
    A. Rothwarf and K.W. Boer,Progress in Solid-State Chemistry,10, 71 (1975).CrossRefGoogle Scholar
  3. 3.
    W. Shockley,Bell Syst. Tech. J.,28, 435 (1949).CrossRefGoogle Scholar
  4. 4.
    W. Shockley,Electrons and Holes in Semiconductors, Van Nostrand Co. Inc., New Jersey (1950).Google Scholar
  5. 5.
    H.J. Hovel,Solar Cells,Semiconductors and Semimetals, Vol. 11 (Eds., R.K. Willardson and A. C. Beer ), Academic Press, New York (1975).Google Scholar
  6. 6.
    B.L. Sharma and R.K. Purohit,Semiconductor Heterojunctions, Pergamon Press Ltd., Oxford (1974).Google Scholar
  7. 7.
    A.G. Milnes and D.L. Feucht,Heterojunctions and Metal-Semiconductor Junctions, Academic Press, New York (1972).Google Scholar
  8. 8.
    A.M. Barnett and A. Rothwarf,IEEE Trans. Electron Dev., ED-27, 615 (1980).Google Scholar
  9. 9.
    M.J. Adams and A. Nussbaum,Solid-State Electronics,22, 783 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    W.A. Harrison,J. Vac. Sci. Technol.,14, 1016 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    A.I. Gubanov,Zh. Tekh. Fiz.,21, 304 (1951).Google Scholar
  12. 12.
    A.I. Gubanov,Zh. Eksper. Teor. Fiz.,21, 79 (1951).Google Scholar
  13. 13.
    A.I. Gubanov,Zh. Tekh. Fiz.,22, 729 (1952).Google Scholar
  14. 14.
    R.L. Anderson,IBM J. Res. Dev.,4, 283 (1960).CrossRefGoogle Scholar
  15. 15.
    R.L. Anderson,Solid-State Electronics,5, 341 (1962).ADSCrossRefGoogle Scholar
  16. 16.
    R.L. Anderson,Proc. Int. Conf. on the Physics and Chemistry of Semiconductor Hetero-junctions (Ed.-in-chief, G. Szigeti), Vol. 2, Akademiai Kiado, Budapest (1971), p. 55.Google Scholar
  17. 17.
    S.S. Perlman and D.L. Feucht,Solid-State Electronics,7, 911 (1964).ADSCrossRefGoogle Scholar
  18. 18.
    U. Dolega,Z. Natur.,18a, 653 (1963).ADSGoogle Scholar
  19. 19.
    C.J.M. Van Opdorp, Thesis, Technische Hogeschool, Eindhoven, Netherlands (1969).Google Scholar
  20. 20.
    R.H. Rediker, S. Stopek and J.H.R. Ward,Solid-State Electronics,7, 621 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    P.C. Newman,Electronic Letters,1, 265 (1965).CrossRefGoogle Scholar
  22. 22.
    A.R. Riben and D.L. Feucht,Solid-State Electronics,9, 1055 (1966).ADSCrossRefGoogle Scholar
  23. 23.
    A.R. Riben and D.L. Feucht,Int. J. Electron.,20, 583 (1966).CrossRefGoogle Scholar
  24. 24.
    J.P. Donnelly and A.G. Milnes,Proc. IEE,113, 1468 (1966).Google Scholar
  25. 25.
    R.C. Kumar,Int. J. Electron., 25, 239 (1968).CrossRefGoogle Scholar
  26. 26.
    W.G. Oldham and A.G. Milnes,Solid-State Electronics,6, 121 (1963).ADSCrossRefGoogle Scholar
  27. 27.
    W.G. Oldham and A.G. Milnes,Solid-State Electronics,7, 153 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    C. Van Opdorp and H.K.J. Kanerva,Solid-State Electronics,10, 401 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    L.J. Van Ruyven, J.M.P. Papenhuijen and A.C.J. Verhoven,Solid-State Electronics,8, 631 (1965).CrossRefGoogle Scholar
  30. 30.
    A. Rothwarf, Final Report NSF/RANN/AER 72–03478 A03/FR/75 (1975), pp. 136–171.Google Scholar
  31. 31.
    H.A. Bethe, MIT Radiation Laboratory Report, 43–12 (1942).Google Scholar
  32. 32.
    W. Schottky,Naturwiss.,26, 843 (1938).ADSCrossRefGoogle Scholar
  33. 33.
    C. R. Crowell and S. M. Sze,Solid-State Electronics,9, 1035 (1966).ADSCrossRefGoogle Scholar
  34. 34.
    A.L. Fahrenbruch, Ph.D. Thesis, Stanford University (1973).Google Scholar
  35. 35.
    J. Lindmayer and A.G. Revesz,Solid-State Electronics,14, 647 (1971).ADSCrossRefGoogle Scholar
  36. 36.
    W.D. Gill, Ph.D. Thesis, Stanford University (1970).Google Scholar
  37. 37.
    P.F. Lindquist, Ph.D. Thesis, Stanford University (1970).Google Scholar
  38. 38.
    F.A. Shirland,Adv. Energy Conversion,6, 201 (1966).CrossRefGoogle Scholar
  39. 39.
    F.A.-Lindholm, J.G. Forsum and E.L. Burgess,IEEE Trans. Electron Dev., ED- 26, 165 (1979).Google Scholar
  40. 40.
    N.G. Tarr and D.L. Pulfrey,Solid-State Electronics,22, 265 (1979).ADSCrossRefGoogle Scholar
  41. 41.
    A. Rothwarf,Proc. 13th IEEE Photovoltaic Specialists Conference, Washington, D.C. (1978), p. 1312.Google Scholar
  42. 42.
    M.B. Prince,J. Appl. Phys.,26, 534 (1955).ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Loferski,J. Appl. Phys.,27, 777 (1956).ADSCrossRefGoogle Scholar
  44. 44.
    J. J. Wysocki and P. Rappaport,J. Appl. Phys.,31, 571 (1960).ADSCrossRefGoogle Scholar
  45. 45.
    M. Wolf,Proc. IRE,48, 1246 (1960).CrossRefGoogle Scholar
  46. 46.
    W. Shockley and H.J. Queisser,J. Appl. Phys.,32, 510 (1961).ADSCrossRefGoogle Scholar
  47. 47.
    A. deVos,Energy Conversion,16, 67 (1976).ADSCrossRefGoogle Scholar
  48. 48.
    A. deVos and H.J. Pauwels,IEEE Trans. Electron Dev., ED- 24, 388 (1977).Google Scholar
  49. 49.
    P. Moon,J. Franklin Inst.,20, 583 (1940).CrossRefGoogle Scholar
  50. 50.
    D.L. Pulfrey,Photovoltaic Power Generation, Van Nostrand-Reinhold Company, New York (1978).Google Scholar
  51. 51.
    M. Wolf,Proc. IEEE,51, 674 (1963).CrossRefGoogle Scholar
  52. 52.
    B. Ellis and T.S. Moss,Solid-State Electronics,13,1 (1970).Google Scholar
  53. 53.
    J.G. Fossum, Sandia Laboratories, Energy Report, SLA-74–0273 (June 1974).Google Scholar
  54. 54.
    S.C. Tsaur, A.G. Milnes, R. Sahai and D.L. Feucht, Symposium on GaAs, Boulder, p. 156; Institute of Physics and Physical Society, London (1972).Google Scholar
  55. 55.
    W.H. Bullis and W.R. Runyan,IEEE Trans. Electron Dev., ED- 14, 75 (1967).Google Scholar
  56. 56.
    S. Kaye and G.P. Rolik,IEEE Trans. Electron Dev., ED- 13, 563 (1966).Google Scholar
  57. 57.
    R. van Overstraeten and W. Nuyts,IEEE Trans. Electron Dev., ED- 16, 632 (1969).Google Scholar
  58. 58.
    O. von Roos,J. Appl. Phys.,49, 3503 (1978).ADSCrossRefGoogle Scholar
  59. 59.
    M.P. Godlewski, C.R. Baraona and H.W. Brandhorst, Jr.,Proc. 10th IEEE Photovoltaic Specialists Conference, Palo Alto (1973), p. 40.Google Scholar
  60. 60.
    S.J. Fonash,J. Appl. Phys.,51, 2115 (1980).ADSCrossRefGoogle Scholar
  61. 61.
    D.L. Feucht,J. Vac. Sci. Technol.,14, 57 (1977).ADSCrossRefGoogle Scholar
  62. 62.
    G. Vanhoutte and H. Pauwels,Proc. 2nd European Commission Photovoltaic Solar Energy Conference (Eds., R. Van Overstraeten and W. PaIz ), Berlin, West Germany (April 1979), p. 662.Google Scholar
  63. 63.
    H.J. Pauwels and G. Vanhoutte,J. Phys. D:Appl. Phys.,11, 649 (1978).ADSCrossRefGoogle Scholar
  64. 64.
    H.J. Pauwels,Solid-State Electronics,22, 988 (1979).ADSCrossRefGoogle Scholar
  65. 65.
    H.J. Pauwels, P. de Visschere and P. Reussens,Solid-State Electronics,21, 775 (1978).ADSCrossRefGoogle Scholar
  66. 66.
    K.W. Boer,J. Appl. Phys.,50, 53–56 (1979).Google Scholar
  67. 67.
    R.H. Bube, F. Buch, A.L. Fahrenbruch, Y.Y. Ma and K.W. Mitchell,IEEE Trans. Electron Dev., ED- 24, 487 (1977).Google Scholar
  68. 68.
    R. Sahai and A.H.Milnes,Solid-State Electronics,13, 1289 (1970).ADSCrossRefGoogle Scholar
  69. 69.
    A.L. Fahrenbruch and J. Aranovich, inTopics in Applied Physics,Vol. 31, Heterojunction Phenomena and Interfacial Defects in Photovoltaic Converters,Solar Energy Conversion (Ed., B.O. Seraphin ), Springer-Verlag, New York (1979), p. 257.Google Scholar
  70. 70.
    Proc. Int. Workshop on Cadmium Sulphide Solar Cells and Other Abrupt Heterojunctions (Eds., K.W. Boer and J.D. Meakin), Delaware (1975); NSF-RANN AER75–15858.Google Scholar
  71. 71.
    S.J. Fonash,Solid-State Electronics,22, 907 (1979).ADSCrossRefGoogle Scholar
  72. 72.
    S. Fonash and A. Ashok,Proc. 14th IEEE Photovoltaic Specialists Conference, San Diego (1980).Google Scholar
  73. 73.
    J.M. Woodall and H.J. Hovel,J. Vac. Sci. Technol.,12, 1000 (1975).ADSCrossRefGoogle Scholar
  74. 74.
    A. Rothwarf, Technical Report NSF/RANN/AER 72–03478 A04/TR76/1, University of Delaware (1976).Google Scholar
  75. 75.
    R. Hill,Solid State and Electron Devices,2,S 55 (1978).Google Scholar
  76. 76.
    J. R. Szedon, F.A. Shirland, W.J. Biter, J.A. Stoll, H.C. Dickey and T.W. O’Keeffe, Technical Progress Report No. 4, Contract EG-77-C-03–1577, Westinghouse RandD Center (1978).Google Scholar
  77. 77.
    H.W. Schock,Proc. Workshop on II-VI Solar Cells and Similar Compounds, Montpellier (1979), p. IX - 1.Google Scholar
  78. 78.
    W. Palz, J. Besson, T. Nguyen Duy and J. Vedel,Proc. 10th IEEE Photovoltaic Specialists Conference, Palo Alto (1973), p. 69.Google Scholar
  79. 79.
    H.J. Hovel and J.M. Woodall,Proc. 10th IEEE Photovoltaic Specialists Conference, Palo Alto (1973), p. 25.Google Scholar
  80. 80.
    C. Feldman, N.A. Blum, H.K. Charles, Jr. and F.G. Satkiewicz,J. Electronic Materials,7, 309 (1978).ADSCrossRefGoogle Scholar
  81. 81.
    K.W. Boer and A. Rothwarf,Annual Review of Materials Science,6, 303 (1976).ADSCrossRefGoogle Scholar
  82. 82.
    H.J. Hovel and J.M. Woodall,J. Electrochem. Soc.,29, 1246 (1973).CrossRefGoogle Scholar
  83. 83.
    K.W. Boer,Int. NSF Workshop on Heterojunctions, University of Delaware, Proc. NSF AER75 15858 (1975), p. 194.Google Scholar
  84. 84.
    H.C. Card and E.S. Yang,IEEE Transac. Electron Dev., ED- 24, 397 (1977).Google Scholar
  85. 85.
    S.I. Soclof and P.A. Iles,Proc. 11th IEEE Photovoltaic Specialists Conference, Scottsdale (1975), p. 56.Google Scholar
  86. 86.
    C. Lanza and H.J. Hovel,IEEE Trans. Electron Dev., ED- 24, 392 (1977).Google Scholar
  87. 87.
    A. Rothwarf,Proc. 12th IEEE Photovoltaic Specialists Conference, Baton Rouge (1977), p. 488.Google Scholar
  88. 88.
    L.M. Fraas,J. Appl. Phys.,49, 871 (1978).ADSCrossRefGoogle Scholar
  89. 89.
    L.L. Kazmerski,Solid-State Electronics,21, 1545 (1978).ADSCrossRefGoogle Scholar
  90. 90.
    L.L. Kazmerski, P. Sheldon and P.J. Ireland,Thin Solid Films,58, 95 (1979).ADSCrossRefGoogle Scholar
  91. 91.
    A. Rothwarf and A.M. Barnett, Technical Report IEC/PV/TR/76/2 (1976).Google Scholar
  92. 92.
    K. Rajkanan and J. Shewchun,Solid-State Electronics,22, 193 (1979).ADSCrossRefGoogle Scholar
  93. 93.
    P.J. Chen, S.C. Pao, A. Neugroschel and F.A. Lindholm,IEEE Trans. Electron Dev., ED- 25, 386 (1978).Google Scholar
  94. 94.
    M. Wolf and H. Rauschenbach,Advanced Energy Conversion,3, 455 (1963).CrossRefGoogle Scholar
  95. 95.
    K. Lehovec and A. Fedotowsky,Solid-State Electronics,20, 725 (1977).ADSCrossRefGoogle Scholar
  96. 96.
    A. Flat and A.G. Milnes,Solar Energy,25, 283 (1980).ADSCrossRefGoogle Scholar
  97. 97.
    Ir. B. Jacobs,Archiv für Elektronik and Ubertragungstechnik,32, 127 (1978).Google Scholar
  98. 98.
    J.T. Burill, D. Smith, K. Stirrup and W.J. King,Proc. 6th IEEE Photovoltaic Specialists Conference, Florida (1967), p. 81.Google Scholar
  99. 99.
    D. Redfield,Appl. Phys. Lett.,26, 647 (1974).MathSciNetADSCrossRefGoogle Scholar
  100. 100.
    G.H. Hewig, F. Pfisterer, H.W. Schock and W.H. Bloss,Proc. Workshop on the II-VI Solar Cells and Similar Compounds, Montpellier (1979), p. VII - 1.Google Scholar
  101. 101.
    B. Jacobs and G. DeMey,Solid-State Electronics,21, 1191 (1978).ADSCrossRefGoogle Scholar
  102. 102.
    G. DeMey, B. Jacobs and F. Fransen,Electronics Letters,13, 657 (1977).ADSCrossRefGoogle Scholar
  103. 103.
    R. Singh, M.A. Green and K. Rajkanan,Solar Cells,3, 95 (1981).ADSCrossRefGoogle Scholar
  104. 104.
    M.A. Green, Ph.D. Thesis, McMaster University (1974).Google Scholar
  105. 105.
    R. Singh, Ph.D. Thesis, McMaster University (1979).Google Scholar
  106. 106.
    M.A. Green, F.D. King and J. Shewchun,Solid-State Electronics,17, 551 (1974).ADSCrossRefGoogle Scholar
  107. 107.
    R. Singh and J. Shewchun,Appl. Phys. Lett.,28, 512 (1976).ADSCrossRefGoogle Scholar
  108. 108.
    J. Shewchun, J. DuBow, A. Myszkowski and R. Singh,J. Appl. Phys.,49, 855 (1978).ADSCrossRefGoogle Scholar
  109. 109.
    J. Shewchun, R. Singh and M.A. Green,J. Appl. Phys.,48, 765 (1977).ADSCrossRefGoogle Scholar
  110. 110.
    H. B. Michaelson,J. Phys.,48, 4729 (1977).Google Scholar
  111. 111.
    M.A. Green,Appl. Phys. Lett.,33, 179 (1978).ADSGoogle Scholar
  112. 112.
    P. Richman,MOS Field-Effect Transistor and Integrated Circuits, Wiley, New York (1973), p. 160.Google Scholar
  113. 113.
    K. Rajkanan, R. Singh and J. Shewchun,Solid-State Electronics,22, 793 (1979).ADSCrossRefGoogle Scholar
  114. 114.
    M.A. Green,J. Appl. Phys.,50, 1116 (1979).ADSCrossRefGoogle Scholar
  115. 115.
    E. Bucher,Appl. Phys.,17, 1 (1978).ADSCrossRefGoogle Scholar
  116. 116.
    C.E. Norman and R.E. Thomas,IEEE Trans. Elec. Dev., ED-27, 731 (1980).Google Scholar
  117. 117.
    R.B. Godfrey and M.A. Green,IEEE Trans. Elec. Dev., ED-27, 737 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Kasturi Lal Chopra
    • 1
  • Suhit Ranjan Das
    • 2
  1. 1.Indian Institute of TechnologyNew DelhiIndia
  2. 2.National Research CouncilOttawaCanada

Personalised recommendations