Geophysical Constraints on the Volume of Hydrothermal Flow at Ridge Axes

  • Norman H. Sleep
  • Janet L. Morton
  • Laurel E. Burns
  • Thomas J. Wolery
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

Hydrothermal circulation at the ridge axis removes heat from the oceanic crust more rapidly than would conduction alone. The top of the axial magma chamber is thus deeper and possibly wider than the theoretical shape computed from conductive thermal models. At 9°N on the East Pacific Rise seismic reflection indicates that the roof of the magma chamber is relatively flat, 2 km deep, and extends 4 km from the axis. This is about a kilometer deeper than predicted by a purely conductive model.

We believe that the magma chamber is mostly filled with mush at ridges with both fast and slow spreading rates. At fast rates the mush is formed by crystallization at the top of a magma chamber that is wide and flat topped. At slow rates a narrow magma chamber is probably an anastomosing complex of partially molten dikes and associated cumulate layers. Thermal modeling indicates that the hydrothermal heat flux is between 0.7×108 and 1.5×108 cal/cm2, or less than 1/10 of the total missing heat flux (the difference between obsereved and theoretical heat flow) at the ridge axis. By using the observation that Mg is totally depleted from exiting axial fluids, we find that the minimum amount of crust which reacts with axial hydrothermal flow is equivalent to a 80 m thick section of crust. A minimum thickness of 200 m is obtained from K which is leached from the basalt into the hydrothermal fluid. These estimates indicate that there is no requirement that the bulk of the oceanic crust react strongly with the axial hydrothermal fluid.

Keywords

Oceanic Crust Magma Chamber Oceanic Lithosphere Seafloor Spreading Ridge Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. N., and Hobart, M. A., 1976, The relation between heat flow, sediment thickness and age in the Eastern Pacific, J. Geophys. Res., 81: 2968–2989.CrossRefGoogle Scholar
  2. Anderson, R. N., Langseth, M. G., and Sclater, J. G., 1977, The mechanism of heat transfer through the floor of the Indian Ocean, J Geophys. Res., 82: 3391–3409.CrossRefGoogle Scholar
  3. Bibbee, L. D., Dorman, L. M., Johnson, S. H., and Orcutt, J. A., 1983, Crustal. structure of the East Pacific Rise at 10°S, J. Geophys. Res., 87 (in press), (unseen).Google Scholar
  4. Cann, J. R., 1974, A model for oceanic crustal structure developed, Geophys. J. R. astron. Soc., 3.9 169–187.Google Scholar
  5. Casey, J. F., Dewey, J. F., Fox, P. J., and Karson, J. A., 1981, Heterogeneous nature of oceanic crust and upper mantle: A perspective from the Bay of Islans ophiolite complex, in: “The Oceanic Lithosphere, The Sea, Vol. 7,” C. Emiliani, ed., John Wiley, New York, 305–338.Google Scholar
  6. Converse, D. R, Holland, H. D., and Edmond, J. M., 1982, Hydrothermal flow rates at 21°N, EOS, Trans. Amer. Geophys. Union, 63: abstract V551–4, 472.Google Scholar
  7. Dewey, J. F., and Kidd, W. S. F., 1977, Geometry of plate accretion, Geol. Soc. Amer. Buell., 88: 960–968.CrossRefGoogle Scholar
  8. Dreyer, J. I., 1974, The magnesium problem, in: “Marine Chemistry, The Sea, Vol. 5,” E. D. Goldberg, ed., Wiley-Interscience, New York, 337–357.Google Scholar
  9. Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B., 1979, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sci. Lett., 46. 1–18.CrossRefGoogle Scholar
  10. Elthon, D., Casey, J., and Komor, S., 1982, Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts, J. Geophys. Res., 87: 8717–8734.CrossRefGoogle Scholar
  11. Fox, P. J., and Stroup, J. B., 1981, Geological and geophysical properties of the lower oceanic crust, in: “The Oceanic Lithosphere, The Sea, Vol. 7,” C. Emiliani, ed., John Wiley, New York, 119–216.Google Scholar
  12. Gregory, R. T., and Taylor, H. P., 1981, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for d1130 buffering of the oceans by deep (5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res., 86: 2737–2755.CrossRefGoogle Scholar
  13. Hale, L. D., Morton, C. J., and Sleep, N. H., 1982, Reinterpretation of seismic reflection data over the East Pacific Rise, J. Geophys. Res„ 87: 7707–7718.CrossRefGoogle Scholar
  14. Hart, R. A., 1973, A model for chemical exchange in the basalt-sea water system of oceanic layer II, Can. J. Earth Sci., 10: 801–816.Google Scholar
  15. Herron, T. J., Ludwig, W. J., Stoffa, P. L., Kan, T. K., and Buhl, P., 1978, Structure of the East Paccific Rise crest from multichannel seismic data, J. Geophys. Res., 83: 798–804.CrossRefGoogle Scholar
  16. Hess, H. H., 1965, Mid-oceanic ridges and the tectonics of the sea-floor, in: “Submarine Geology and Geophysics,” W. F. Whittard and R. Bradshaw, eds., Butterworths, London, 317–333.Google Scholar
  17. Lewis, B. T. R., 1981, Isostasy, Magma chambers, and plate driving forces on the East Pacific Rise, J. Geophys. Res., 86: 4868–4880.CrossRefGoogle Scholar
  18. Lewis, B. T. R., 1982, Constraints on the structure of the East Pacific Rise from gravity, J. Geophys. Res., 87: 8491–8500.CrossRefGoogle Scholar
  19. Macdonald, K. C., 1982, Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Ann. Rev. Earth Planet Sci., 10: 155–190.Google Scholar
  20. Macdonald, K. C., Becker, K., Spiess, F. N., and Ballard, R. D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise, Earth Planet. Sci. Lett., 48: 1–7.Google Scholar
  21. Matti, M. J., 1976, Chemical exchange between sea water and basalt during hydrothermal alteration of the oceanic crust, Ph. D. thesis, Harvard University, Cambridge, Mass.Google Scholar
  22. Oldenburg, D. W., 1975, A physical model for creation of the lithosphere, Geophys. J R. astron. Soc., 43: 425–451.CrossRefGoogle Scholar
  23. Orcutt, J. A., Kennett, B. L. M., and Dorman, L. M., 1976, Structure of the East Pacific Rise from an ocean bottom seismometer survey, Geophys. J. R. astron. Soc., 45: 305–320.CrossRefGoogle Scholar
  24. Pallister, J. S., and Hopson, C. A., 1981, Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res., 86: 2593–2644.CrossRefGoogle Scholar
  25. Parker, R. L., and Oldenburg, D. W., 1973, Thermal model of ocean ridges, Nature, 242. 137–139.CrossRefGoogle Scholar
  26. Rosendahl, B. R., 1976, Evolution of oceanic crust 2.. Constraints, implications, and inferences, J. Geophys. Res., 81: 5305–5313.CrossRefGoogle Scholar
  27. Rosendahl, B. R., Raitt, R. W., Dorman, L. M., Bibbee, L. O., Hussong, D. M., and Sutton, G. H., 1976, Evolution of oceanic crust, 1, A physical model of the East Pacific Rise crest derived from seismic refraction data, J Geophys. Res., 81: 5294–5305.CrossRefGoogle Scholar
  28. Sclater, J. G., and Francheteau, J., 1970, The implications of terrestrial heat flow observations on current tectonic and geothermal models of the crust and upper mantle of the earth, Geophys. J. R. astron. Soc., 2a 509–542.Google Scholar
  29. Sclater, J. G., Jaupart, C., and Galson, D., 1980, The heat flow through oceanic and continental crust and the heat loss of the earth, Rev. Geophys. Space Phys., 18: 269–312.CrossRefGoogle Scholar
  30. Sleep, N. H., 1974, Segregation of magma from a mostly crystalline mush, Geol. Soc. Amer. Bull., 85: 1225–1232.CrossRefGoogle Scholar
  31. Sleep, N. H., 1975, Formation of the oceanic crust: some thermal constraints, J. Geophys. Res., 80: 4037–4042.CrossRefGoogle Scholar
  32. Sleep, N. H., 1978, Thermal structure of mid-oceanic ridge axes, soine implications to basaltic volcanism, Geophys. Res. Lett., 5: 426–428.CrossRefGoogle Scholar
  33. Sleep, N. H., and Rosendahl, B. R., 1979, Topography and tectonics of midocean ridge axes, J. Geophys. Res., 75: 6831–6839.CrossRefGoogle Scholar
  34. Sleep, N. H., and Wolery, T. J., 1978, Thermal and chemical constraints on venting of hydrothermal fluids at mid-ocean ridges, J. Geophys. Res., 83: 5913–5922.CrossRefGoogle Scholar
  35. Wolery, T. J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges - A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals. Ph. D. thesis, Northwestern University, Evanston, Ill., 263 pp.Google Scholar
  36. Wolery, T. J., and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at mid-ocean ridges, J. Geol., 84: 249–275.CrossRefGoogle Scholar
  37. Wolery, T. J., and Sleep, N. H., 1983, Interactions between ex:ogenic cycles and the mantle, in, “Chemical Cycles and the Evolution of the Earth,” R. M. Garrels, C. B. Gregor, and F. T. Mackenzie, eds., (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Norman H. Sleep
    • 1
  • Janet L. Morton
    • 1
  • Laurel E. Burns
    • 1
  • Thomas J. Wolery
    • 2
  1. 1.Dept. of GeophysicsStanford UniversityStanfordUSA
  2. 2.Earth Sciences DivisionLawrence Livermore LaboratoryLivermoreUSA

Personalised recommendations