Reduced Gases and Bacteria in Hydrothermal Fluids: The Galapagos Spreading Center and 21°N East Pacific Rise

  • Marvin D. Lilley
  • John A. Baross
  • Louis I. Gordon
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

Hydrothermal fluids at the Galapagos Spreading Center (GSC) and at 21°N on the East Pacific Rise were enriched in methane, hydrogen and carbon monoxide by orders of magnitude over ambient bottom water. Nitrous oxide showed both enrichment and depletion in warm vent waters. Each GSC vent field exhibited unique dissolved gas to silica ratios indicating that complex source — sink mechanisms operated within a small geographic region. The CH4/3 He ratio at 21°N was 6.1 × 106 whereas at the GSC, a range of 12.4 to 42 × 106 was seen. At 21°N the H2/3 He ratio was on the order of 100 times that at the GSC. Microbial data showed as many as 109 organisms ml−1 in GSC samples and 105 ml−1 in the hot 21°N waters. These microbial communities are complex and include organisms known to produce and consume the gases discussed here. We conclude that microbial activity in the warm GSC vents is a significant contributing factor in determining the final gas concentrations in the vent waters.

Keywords

Nitrous Oxide Hydrothermal Fluid Hydrothermal Vent Spreading Center Ridge Crest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminuddin, M. and Nicholas, D. J. D., 1973, Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrif icans, Biochim. Biophys. Acta, 325:81–93.Google Scholar
  2. Arrhenius, G. (1981) Interaction of ocean-atmosphere with planetary interior. Adv. Space Res., 1: 37–48.CrossRefGoogle Scholar
  3. Ballard, R. D., van Andel, T. H. and Holcomb, R. T., 1982, The Galapagos Rift at 86°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30–kilometer segment of the rift valley. J. Geophys. Res., 87: 1149–1161.CrossRefGoogle Scholar
  4. Baross, J. A., Lilley, M. D. and Gordon, L. I., 1982a, Is the CH4, I2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria ? Nature 298: 366–368.CrossRefGoogle Scholar
  5. Baross, J. A., Dahm, C. N., Ward, A. K., Lilley, M. D. and Sedell, J. R., 1982b, Initial microbial response in lakes to the Mt. St. Helens eruption. Nature 296: 49–52.CrossRefGoogle Scholar
  6. Baross, J. A., Lilley, M. D., Dahm, C. N., and Gordon, L. I., 1982c, Evidence for microbial linkages between CH+ and CO in aquatic environments. EOS, Trans. Am. Geophys.Union , 63: 155.Google Scholar
  7. Cicerone, R. J., Shetter, J. D., Stedman, D. H., Kelly, T. J. and Liu, S. C., 1978, Atmospheric N20: measurements to determine its sources, sinks, and variations. J. Geophys Res., 83: 3042–3050.Google Scholar
  8. Cohen, Y., 1977, Shipboard measurement of dissolved nitrous oxide in seawater by electron capture gas chromatography, Anal. Chem., 49: 1238–1240.Google Scholar
  9. Cohen, Y., 1978, Consumption of dissolved nitrous oxide in an anoxic basin, Saanich Inlet, British Columbia. Nature 272: 235–237.CrossRefGoogle Scholar
  10. Cohen, Y. and Gordon, L. I., 1978, Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Res. 25: 509–524.Google Scholar
  11. Cole, J. A., 1976, Microbial gas metabolism. Adv. Microbial Phys. 14: 1–92.CrossRefGoogle Scholar
  12. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.Google Scholar
  13. Craig, H., Welhan, J. A., Kim, K., Poreda, R. and Lupton, J. E., 1980, Geochemical studies of the 21°N EPR hydrothermal fluids. EOS, Trans. Am. Geophys. Union 61: 992.Google Scholar
  14. Craig, H., 1981, Hydrothermal plumes and tracer circulation along the East Pacific Rise: 20°N to 20°S. EOS, Trans. Am. Geophys. Union 62: 893.CrossRefGoogle Scholar
  15. Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I. and Corliss, J. B., 1979a, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett., 46: 1–18.Google Scholar
  16. Edmond, J. M., Measures,C., Mangum, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A., Gordon, L. I. and Corliss, J. B., 1979b, On the formation of metal-rich deposits at ridge crests. Earth Planet.Sci. Lett., 46: 19–30.CrossRefGoogle Scholar
  17. Edmond, J. M., Von Damm, K. L., McDuff, R. E. and Measures, C. I., 1982, Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297: 187–191.Google Scholar
  18. Fuchs, G., Thauer, R., Ziegler, H. and Stichler, W., 1979, Carbon isotope fractionation by Methanobacterium thermoautotrophium. Archiv. Microbiol. 120:135–139.Google Scholar
  19. Games, L. M., Hayes, J. M., and Gunsalus, R. P., 1978, Methane-producing bacteria: natural fractionations of the stable carbon isotopes. Geochim. Cosmochim. Acta, 42:1295–1297.Google Scholar
  20. Gerlach, T. M., 1980a, Evaluation of volcanic gas analyses from Kilauea volcano. J. Volcanol. Geotherm. Res., 1:295–317.Google Scholar
  21. Gerlach, T. M., 1980b, Evaluation of volcanic gas analyses from Surtsey volcano, Iceland, 1964–1967. J. Volcanol. Geotherm Res., 8:191–198.Google Scholar
  22. Gerlach, T. M. and Nordlie, B. E., 1975, The C-O-H-S gaseous system, part II: temperature, atomic composition, and molecular equilibria in volcanic gases. Am. J. Sci., 275: 377–394.Google Scholar
  23. Goering, J. J., 1978, Denitrification in marine systems. in: “Microbiology-1978”, D. Schlessinger, ed., American Society for Microbiology, Washington D.C. p. 357–361.Google Scholar
  24. Hallam, N. and Eugster, H. P., 1976, Ammonium silicate stability relations. Contrib. Miner. Petrol. 57:227–244.Google Scholar
  25. Jannasch, H. W. and Wirsen, C. O., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers. BioSci. 29: 592–598.Google Scholar
  26. Jannasch, H. W. and Wirsen, C. O., 1981, Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528–538.Google Scholar
  27. Jenkins, W. J., Edmond, J. M. and Corliss, J. B., 1978, Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272: 156–158.Google Scholar
  28. Karl, D. M., Wirsen, C. O. and Jannasch, H. W., 1980, Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.Google Scholar
  29. Karl, D. M., Burns, D. J., and Orrett, K., 1983, Biomass and in situ growth characteristics of deep sea hydrothermal vent microbial communities, Abs. annual meeting Am. Soc. Microbiol. p. 235, Abs. N 69.Google Scholar
  30. LaZerte, B. D., 1981, The relationship between total dissolved carbon dioxide and its stable carbon isotope ratio in aquatic sediments. Geochim. Cosmochim. Acta, 45:647–656.Google Scholar
  31. Lilley, M. D. and Gordon, L. I., 1979, Methane, nitrous oxide, carbon monoxide, and hydrogen in the hydrothermal vents of the Galapagos Spreading Center. EOS, Trans. Am. Geophys. Union 60:863.Google Scholar
  32. Lilley, M. D., de Angelis, M. A. and Gordon, L. I., 1982, Methane, hydrogen, carbon monoxide and nitrous oxide in submarine hydrothermal vent waters. Nature 300: 48–50.Google Scholar
  33. Lupton, J. E., Weiss, R. F. and Craig, H., 1977, Mantle helium in hydrothermal plumes in the Galapagos Rift. Nature 267: 603–604.Google Scholar
  34. McDuff, R. E. and Edmond, J. M., 1982, On the fate of sulfate during hydrothermal circulation at mid-ocean ridges. Earth Planet. Sci. Lett., 57: 117–132.Google Scholar
  35. Rau, G. H., 1981a, Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science 213: 338–339.Google Scholar
  36. Rau, G. H., 1981b, Low 15N/14N in hydrothermal vent animals: ecological implications. Nature 289: 484–485.Google Scholar
  37. Rau, G. H. and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science 203: 648–649.Google Scholar
  38. Richet, P., Bottinga, Y. and Javoy, M., 1977, A review of hydrogen, carbon, nitrogen, oxygen, sulfur and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci., 5: 65–110.CrossRefGoogle Scholar
  39. Rosenfeld, W. D. and Silverman, R. S., 1959, Carbon isotope fractionation in bacterial production of methane. Science 130: 1658–1659.Google Scholar
  40. Schink, D. R., Fanning, K. A. and Piety, J., 1966, A sea-bottom sampler that collects both bottom water and sediment simultaneously. J. Mar. Res., 24: 365–373.Google Scholar
  41. Schoell, M., 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44:649–661.Google Scholar
  42. Welhan, J. A. and Craig, H., 1979, Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophys. Res. Lett., 6: 829–831.CrossRefGoogle Scholar
  43. Williams, P. M., Smith, K. L., Druffel, E. M. and Linick, T. W., 1981, Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity. Nature 292: 448–449.Google Scholar
  44. Wolery, T. J. and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at mid-ocean ridges. J. Geol., 84: 249–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Marvin D. Lilley
    • 1
  • John A. Baross
    • 1
  • Louis I. Gordon
    • 1
  1. 1.School of OceanographyOregon State UniversityCorvallisUSA

Personalised recommendations