Thermosetting Polymers

  • J. P. Critchley
  • G. J. Knight
  • W. W. Wright

Abstract

As pointed out in the introductory chapter, one of the methods of increasing the softening point and glass transition temperatures of a polymer is by chemical cross-linking of the chains. The properties of such a system depend upon the structure of the main chains, the structure of the cross-links, and the number of the cross-links Hence, many variants are possible. As the cross-link density increases, so normally does the heat resistance, but this is accompanied by decreases in impact strength, elongation at break, and reversible extensibility, and almost inevitably a compromise must be accepted. The cross-linking may be brought about either by addition or condensation reactions. The former have the advantage that no volatile by-products are evolved during cure, thus allowing simpler processing at lower pressures. Lower void contents are likely in the final material, and thick sections are much easier to fabricate. In theory all the functional groups should be used up in the cross-linking process, but in practice this is not so. Further reaction may therefore be possible if the material is later exposed to higher temperatures than those used in the cure cycle, with concomitant changes in properties.

Keywords

Flexural Strength Vinyl Ester Phthalic Anhydride Strength Retention Heat Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Martin, The Chemistry of Phenolic Resins, John Wiley and Sons, Inc., New York (1956).Google Scholar
  2. 2.
    N. J. L. Megson, Phenolic Resin Chemistry, Butterworths, London (1958).Google Scholar
  3. 3.
    D. F. Gould, Phenolic Resins, Reinhold Publishing Corp., New York (1959).Google Scholar
  4. 4.
    A. A. K. Whitehouse, E. G. K. Pritchett, and G. Barnet, Phenolic Resins, Iliffe Books Ltd., London (1967).Google Scholar
  5. 5.
    A. Knop and W. Scheib, Chemistry and Application of Phenolic Resins, Springer-Verlag, Berlin (1979).Google Scholar
  6. 6.
    J. R. Lawrence, Polyester Resins, Reinhold Publishing Corp., New York (1962).Google Scholar
  7. 7.
    H. V. Boenig, Unsaturated Polyesters: Structure and Properties, Elsevier, Amsterdam (1964).Google Scholar
  8. 8.
    B. Parkyn, F. Lamb, and B. V. Clinton, Polyesters, Vol. 2, Unsaturated Polyesters and Polyester Plasticisers, Iliffe Books Ltd., London (1967).Google Scholar
  9. 9.
    P. F. Bruins (ed.), Unsaturated Polyester Technology, Gordon and Breach, New York (1976).Google Scholar
  10. 10.
    I. Skeist, Epoxy Resins, Reinhold Publishing Corp., New York (1958).Google Scholar
  11. 11.
    H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York (1967).Google Scholar
  12. 12.
    P. F. Bruins (ed.), Epoxy Resin Technology, Interscience Publishers, New York (1968).Google Scholar
  13. 13.
    W. G. Potter, Epoxide Resins, Iliffe Books, London (1970).Google Scholar
  14. 14.
    R. F. Gould (ed.), Epoxy Resins (Advances in Chemistry Series No. 92 ), American Chemical Society, Washington (1970).Google Scholar
  15. 15.
    C. A. May and Y. Tanaka (eds.), Epoxy Resins: Chemistry and Technology, Marcel Dekker, New York (1973).Google Scholar
  16. 16.
    H. W. Lochte, E. L. Straus, and R. T. Conley, J. Appl. Polym. Sci. 9, 2799 (1965).CrossRefGoogle Scholar
  17. 17.
    R. T. Conley, Thermosetting resins, in Thermal Stability of Polymers, R. T. Conley, (ed.), Marcel Dekker, New York (1970), Vol. 1, Ch. 11, p. 457.Google Scholar
  18. 18.
    Reference 5, p. 149.Google Scholar
  19. 19.
    W. Brenner, D. Lum, and M. W. Riley, in High-Temperature Plastics, Reinhold Publishing Corp., New York (1962), p. 59.Google Scholar
  20. 20.
    H. J. Doyle and S. C. Harrier, Phenolics and Silicones, in Handbook of Fibreglass and Advanced Plastics Composites, G. Lubin, (ed.), Van Nostrand Reinhold Co., New York (1969), Ch. 4, p. 98.Google Scholar
  21. 21.
    Reference 19, p. 69.Google Scholar
  22. 22.
    J. F. Blais, Amino Resins, Reinhold Publishing Corp., New York (1959).Google Scholar
  23. 23.
    C. P. Vale and W. G. K. Taylor, Aminoplastics, Iliffe Books Ltd., London (1964).Google Scholar
  24. 24.
    C. P. Vale, Amino resins, in Developments with Thermosetting Plastics, A. Whelan and J. A. Brydson, (eds.), Applied Science Publishers, London (1975), Ch. 2, p. 13.Google Scholar
  25. 25.
    W. R. Moore and E. Donnelly, J. Appl. Chem. 13, 537 (1963).CrossRefGoogle Scholar
  26. 26.
    Reference 17, p. 505.Google Scholar
  27. 27.
    N. Fried, R. R. Winans, and L. E. Sieffert, ASTM Proceedings 50, 1383 (1950).Google Scholar
  28. 28.
    B. M. Axilrod and M. A. Sherman, J. Research Nat. Bur. St. 44, 65 (1950).CrossRefGoogle Scholar
  29. 29.
    D. A. Anderson and E. S. Freeman, J. Appl. Polym. Sci. 1, 192 (1959).CrossRefGoogle Scholar
  30. 30.
    S. L. Madorsky and S. Straus, Mod. Plast. 38 (6), 134 (1961).Google Scholar
  31. 31.
    Reference 19, p. 85.Google Scholar
  32. 32.
    Reference 19, p. 86.Google Scholar
  33. 33.
    H. C. Anderson, J. Appl. Polym. Sci. 6, 484 (1962).CrossRefGoogle Scholar
  34. 34.
    Reference 11, pp. 6–36.Google Scholar
  35. 35.
    Reference 11, pp. 6–38 and 6–39.Google Scholar
  36. 36.
    Reference 11, pp. 17–22.Google Scholar
  37. 37.
    Reference 19, p. 47.Google Scholar
  38. 38.
    D. B. S. Berry, B. I. Buck, A. Cornwell, and L. N. Phillips, Handbook of Resin Properties, Part A, Cast Resins, Yarsley Testing Laboratories, Ashstead (1975).Google Scholar
  39. 39.
    H. Lee and K. Neville, Epoxy resins, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, New York (1967), Vol. 6, p. 259.Google Scholar
  40. 40.
    A. T. Radcliffe, Furane resins, in Developments with Thermosetting Plastics, A. Whelan and J. A. Brydson, (eds.), Applied Science Publishers, London (1975), Ch. 5, p. 58.Google Scholar
  41. 41.
    A. T. Radcliffe and T. J. Lens, Reinforced Plastics Group (Plastics Institute) Conference,New and Improved Resin Systems, London (1973), Paper 4.Google Scholar
  42. 42.
    P. A. Downing, Chem. Eng. (London) 331, 272 (1978).Google Scholar
  43. 43.
    J. E. Selley, Proc. 29th SPI Reinforced Plastics/Composites Institute Conference (1974), Paper 23-A.Google Scholar
  44. 44.
    E. Fitzer, W. Schaefer, and S. Yamada, Carbon 7, 643 (1969).CrossRefGoogle Scholar
  45. 45.
    R. T. Conley and I. Metil, J. Appl. Polym. Sci. 7, 1083 (1963).CrossRefGoogle Scholar
  46. 46.
    H. Rembold, Kunststoffe 60, 879 (1970).Google Scholar
  47. 47.
    R. E. Young, Vinyl ester resins, in Unsaturated Polyester Technology, P. F. Bruins, (ed.), Gordon and Breach, New York (1976), p. 315.Google Scholar
  48. 48.
    M. E. Kelley, Vinyl ester resin applications, in Unsaturated Polyester Technology, P. F. Bruins, (ed.), Gordon and Breach, New York (1976), p. 343.Google Scholar
  49. 49.
    T. F. Anderson and V. B. Messick, Vinyl ester resins, in Developments in Reinforced Plastics-1, G. Pritchard, (ed.), Applied Science Publishers, London (1980), Ch. 2, p. 29.Google Scholar
  50. 50.
    J. E. Carey and M. B. Launikitis, Proc. 28th SPI Reinforced Plastics/Composites Institute Conference (1973), Paper 8-A.Google Scholar
  51. 51.
    A. G. Edwards, Friedel-Crafts resins, in Developments with Thermosetting Plastics, A. Whelan and J. A. Brydson, (eds.), Applied Science Publishers, London (1975), Ch. 4, p. 41.Google Scholar
  52. 52.
    G. I. Harris, Phenol-aralkyl and related polymers, in Developments in Reinforced Plastics-1 Google Scholar
  53. G. Pritchard, (ed.), Applied Science Publishers, London (1980), Ch. 4, p. 87.Google Scholar
  54. 53.
    L. N. Phillips, RAE Technical Report CPM 3 (1963).Google Scholar
  55. 54.
    N. Grassie and I. G. Meldrum, Eur. Polym. J. 5, 195 (1969).CrossRefGoogle Scholar
  56. 55.
    N. Grassie and I. G. Meldrum, Eur. Polym. J. 6, 499 (1970).CrossRefGoogle Scholar
  57. 56.
    N. Grassie and I. G. Meldrum, Eur. Polym. J. 6, 513 (1970).CrossRefGoogle Scholar
  58. 57.
    N. Grassie and I. G. Meldrum, Eur. Polym. J. 7, 17 (1971).CrossRefGoogle Scholar
  59. 58.
    L. N. Phillips, U.K. Patent No. 1,094, 181 (1967).Google Scholar
  60. 59.
    G. I. Harris and H. S. B. Marshall, U.K. Patent No. 1,099, 123 (1968).Google Scholar
  61. 60.
    J. C. Paxton, Ministry of Defense (Procurement Executive), D. Mat. Report 190 (1973).Google Scholar
  62. 61.
    G. I. Harris and F. Coxon, U.K. Patent No. 1,150, 203 (1969).Google Scholar
  63. 62.
    G. I. Harris, Br. Polym. J. 2, 270 (1970).CrossRefGoogle Scholar
  64. 63.
    G. I. Harris and A. G. Edwards, U.K. Patent No. 1,305, 551 (1973).Google Scholar
  65. 64.
    N. Grassie and I. G. Meldrum, Eur. Polym. J. 7, 1253 (1971).CrossRefGoogle Scholar
  66. 65.
    B. Ellis and P. G. White, Br. Polym. J. 9, 15 (1977).CrossRefGoogle Scholar
  67. 66.
    Trade Brochure on Xylok 210, Albright and Wilson Ltd. (1971).Google Scholar
  68. 67.
    M. Ropars and B. Bloch, La Recherche Aérospatiale 2, 103 (1977).Google Scholar
  69. 68.
    M. Ropars, B. Bloch, and B. Malassine, Paper presented at the Fifth European Conference on Plastics and Rubbers, Paris (1978).Google Scholar
  70. 69.
    B. Bloch and M. Ropars, 23rd Natl. SAMPE Symposium 23, 836 (1978).Google Scholar
  71. 70.
    PSP 6022 Resin and Preimpregnated High Performance Fibers, Provisional Technical Data Sheet, Société Nationale des Poudres et Explosifs.Google Scholar
  72. 71.
    J. Economy and L. Wohrer, Phenolic fibers, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, Bikales, (eds.), (1971), Vol. 15. p. 365.Google Scholar

Supplementary Bibliography

  1. S. Oswitch, Heat resistant thermosetting polymers—a brief review, Rein. Plast. 19, 180 (1975)Google Scholar
  2. S. Oswitch, Heat resistant thermosetting polymers—a brief review, Rein. Plast. 19, 215 (1975).Google Scholar
  3. N. C. W. Judd and W. W. Wright, Thermally stable organic matrices for use in composites, Rep. Prog. Appl. Chem. 59, 87 (1975).Google Scholar
  4. H. Domininghaus, High temperature resistant engineering plastics—properties, processing, and applications, Kunststoffe 69, 1 (1979).Google Scholar
  5. Recent advances in the properties and applications of thermosetting materials, International Conference, Plastics and Rubber Institute, Coventry (1979).Google Scholar
  6. G. J. Knight, High-temperature properties of thermally stable resins, Developments in Reinforced Plastics—I, G. Pritchard, (ed.), Applied Science Publishers, London (1980), Ch. 6, p. 145.Google Scholar
  7. S. Kohn, Les résines phénoliques modifiés par des additions minérales, ONERA Technical Publication No. 324 (1966).Google Scholar
  8. W. A. Keutgen, Phenolic resins, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, New York (1969), Vol. 10, p. 73.Google Scholar
  9. D. V. Gvozdev, A. B. Blyumenfeld, B. M. Kovarskaya, M. S. Akutin, and Y. M. Budnitskii, Ways of increasing the heat resistance of phenol-formaldehyde polymers and materials based on them, Plast. Massy (1) 28 (1980), translated in International Polymer Science and Technology 7,T/37 (1980).Google Scholar
  10. G. Widmer, Amino resins, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, New York (1965), Vol. 2, p. 1.Google Scholar
  11. H. V. Boenig, Polyesters unsaturated, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, New York (1969), Vol. 11, p. 129.Google Scholar
  12. H. Lee and K. Neville, Epoxy resins, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, Bikales, (eds.), (1967), Vol. 6, p. 209.Google Scholar
  13. D. P. Bishop and D. A. Smith, The thermal degradation of epoxide resins, Ind. Eng. Chem. 59, 32 (1967).CrossRefGoogle Scholar
  14. Further aspects of the thermal degradation of epoxide resins, M. A. Keenan and D. A. Smith, J. Appl. Polym. Sci. 11, 1009 (1967).Google Scholar
  15. K. J. Siegfried, Furan polymers, in Encyclopedia of Polymer Science and Technology, H. F. Mark, N. G. Gaylord, and N. M. Bikales, (eds.), Interscience Publishers, New York (1967), Vol. 7, p. 432.Google Scholar
  16. K. B. Bozer, L. H. Brown, and D. D. Watson, Fiberglass reinforced furan composites—a unique combination of properties, Proc. 26th SPI Reinforced Plastics/Composite Institute Conference (1971), Paper 2-C.Google Scholar
  17. K. B. Bozer and L. H. Brown, High temperature and combustion properties of furan composites, Proc. 27th SPI Reinforced Plastics/Composite Institute Conference (1972), Paper 3-C.Google Scholar
  18. T. E. Cravens, DERAKANE 470–45, a new high temperature corrosion resistant resin, Proc. 27th SPI Reinforced Plastics/Composites Institute Conference (1972), Paper 3-B.Google Scholar
  19. Vinyl ester resins, P. Varco and M. J. Seamark, Reinforced Plastics Group (Plastics Institute) Conference, New and Improved Resin Systems, London (1973), Paper 3.Google Scholar
  20. R. J. Lewandowski, E. C. Ford, D. M. Longenecker, A. J. Restaino, and J. P. Burns, New high performance corrosion resistant resin, Proc. 30th SPI Reinforced Plastics/Composites Institute Conference (1975), Paper 6-B.Google Scholar
  21. M. B. Launkitis, A new heat resistant vinyl ester resin, Proc. 31st SPI Reinforced Plastics/ Composites Institute Conference (1976), Paper 15-C.Google Scholar
  22. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 1. A preliminary assessment, RAE Tech. Report 70200 (1970).Google Scholar
  23. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 2. Toluene and terphenyl resins, RAE Tech. Report 72029 (1972).Google Scholar
  24. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 3. Xylene resins, RAE Tech. Report 72220 (1972).Google Scholar
  25. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 4. Diphenyl oxide resins, RAE Tech. Memo Mat. 217 (1975).Google Scholar
  26. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 5. Chemical resistance, RAE Tech. Report 75115 (1975).Google Scholar
  27. B. M. Parker, Friedel-Crafts Resin/Carbon Fiber Composites. Part 6. Mechanical properties, RAE Tech. Report 76051 (1976).Google Scholar
  28. B. M. Parker and L. N. Phillips, Friedel-Crafts thermosetting resins, Reinforced Plastics Group (Plastics Institute) Conference,New and Improved Resin Systems, London (1973), Paper 8.Google Scholar
  29. G. I. Harris, Friedel-Crafts resin composites for hostile environments, Reinforced Plastics Group (Plastics Institute) Conference, New and Improved Resin Systems, London (1973), Paper 12. Also published by G. I. Harris, A. G. Edwards, and B. G. Huckstepp, in Plastics and Polymers, (December 1974), p. 239.Google Scholar
  30. G. I. Harris, A. G. Edwards, and F. Coxon, Xylok resins—their properties and applications, Chimica Petrolchimica 6, 403 (1976).Google Scholar
  31. G. Buchi and R. Kultzow, Xylok resins—a high performance family of resins, Paper presented at SPE Antech Conference on High Performance Plastics, Cleveland, 1976.Google Scholar
  32. G. I. Harris and A. G. Edwards, Reinforced phenol-aralkyl resin composites for demanding applications, Paper presented at The Reinforced Plastics Congress, Brighton, 1978.Google Scholar
  33. B. Malassine, Flammability, smoke, and smoke gas properties of materials made with PSP 6030 type resins, 23rd Natl. SAMPE Symposium 23, 929 (1978).Google Scholar
  34. B. Malassine, PSP 6022 resin, a solution for the electrical problems posed by potential release of free carbon/ graphite fibers into the environment, 24th Nat. SAMPE Symposium 24, 1 (1979).Google Scholar
  35. B. Bloch, High temperature reinforced plastic radome manufacturing by an injection technique using PSP resin, ONERA TP No. 1980–68, Paper presented at the 15th Symposium on Electromagnetic Windows, Atlanta, June 18–20, 1980.Google Scholar
  36. B. Bloch, Fabrication of heat-resistant composite materials by injection of PSP resin into a glass cloth reinforcement, ONERA TP No. 1980–88, Paper presented at the 3rd International Conference on Composite Materials, Paris, August 26–29, 1980.Google Scholar
  37. J. P. Favre and M. Ropars, SEM contribution to the study of the fracture behavior of composites with a PSP thermostable resin, ONERA TP. No. 1980–89, Paper presented at the 3rd International Conference on Composite Materials, Paris, August 26–29, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. P. Critchley
    • 1
  • G. J. Knight
    • 1
  • W. W. Wright
    • 1
  1. 1.Royal Aircraft EstablishmentFarnboroughEngland

Personalised recommendations