Hepatitis B pp 225-236 | Cite as

Synthesis and Assembly of Hepatitis B Virus Antigens in Heterologous Systems

  • Pablo Valenzuela
  • Paulina Bull
  • Doris Coit
  • Brian Craine
  • Robert Hallewell
  • Ulrike Heberlein
  • Orgad Laub
  • Frank Masiarz
  • Angelica Medina
  • Steve Rosenberg

Abstract

Hepatitis B virus (HBV) is a particle of 42 nm diameter (the Dane particle) consisting of a core containing the viral genome (3200 base pairs of partially single-stranded DNA (1)) bound to the core protein and its own DNA polymerase (2,3); the virus core is surrounded by a phospholipid-containing envelope carrying the major surface antigenic determinants (HBsAg). These reside in a single protein, which occurs in both a glycosylated and non-glycosylated form of 27,000 and 23,000 daltons respectively (4,5). Infection with hepatitis B virus leads not only to the production of Dane particles but also to a dramatic overproduction of 22 nm large particles and filaments (the HBsAg particle) that contain the elements of the surface envelope. These HBsAg particles are about 1000-fold more immunogenic than the unassembled HBsAg protein (6). Core particles produced by removal of the surface coat protein contain a major polypeptide (the core antigen, HBcAg) of MW 19,000. This protein is very basic and interacts with the viral DNA in the center of the viral particle.

Keywords

Core Antigen Heterologous System Dane Particle GAPDH Promoter SV40 Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Summers, J., O’Connell, A., and Millman, I. (1975). Proc. Natl. Acad. Sci. USA 72:4597.PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson, W. S. and Greenman, R. C. (1974). J. Virol. 13:1231.PubMedGoogle Scholar
  3. 3.
    Hruska, J. F. and Robinson, W. S. (1977). J. Med. Virol. 1:119.PubMedCrossRefGoogle Scholar
  4. 4.
    Shih, J. W. K. and Gerin, J. L. (1977). J. Virol. 21:1219.PubMedGoogle Scholar
  5. 5.
    Peterson, D. L. (1981). J. Biol. Chem. 256:6975.PubMedGoogle Scholar
  6. 6.
    Cabrai, G. A., Marciano-Cabral, F., Funk, G. A., Sanchez, Y., Hollinger, F. B., Melnick, J. L., and Dreesman, G. R. (1978). J. Gen. Virol. 38:339.CrossRefGoogle Scholar
  7. 7.
    Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, H. M., and Rutter, W. J. (1979). Nature 280:815.PubMedCrossRefGoogle Scholar
  8. 8.
    Pasek, M., Goto, T., Gilbert, W., Zink, B., Schaller, H., Mackay, P., Leadbetter, G., and Murray, K. (1979). Nature 282:575.PubMedCrossRefGoogle Scholar
  9. 9.
    Galibert, F., Mandart, E., Fitoussi, F., Tiollais, P., and Charnay, P. (1979). Nature 281:646.PubMedCrossRefGoogle Scholar
  10. 10.
    Valenzuela, P., Quiroga, M., Zaldivar, J., Gray, P., and Rutter, W. J. (1980). in Animal Virus Genetics, B. N. Fields, R. Jaemisch and C. F. Fox, eds., Academic Press, New York, pp. 55–77.Google Scholar
  11. 11.
    Burrell, C. J., Mackay, P., Greenway, P. J., Hofschneider, P. H., and Murray, K. (1979). Nature 279:43.PubMedCrossRefGoogle Scholar
  12. 12.
    Edman, J. C., Hallewell, R. A., Valenzuela, P., Goodman, H. M., and Rutter, W. J. (1981). Nature 291:503.PubMedCrossRefGoogle Scholar
  13. 13.
    Stahl, S., Mackay, P., Magazin, M., Bruce, S. A., and Murray, K. (1982). Proc. Natl. Acad. Sci. USA 79:1606.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen, B. and Richmond, J. E. (1982). Nature 296:677.PubMedCrossRefGoogle Scholar
  15. 15.
    Novick, P., Field, C., and Scheckman, R. (1980). Cell 21: 205.PubMedCrossRefGoogle Scholar
  16. 16.
    Beggs, G. D. (1978). Nature 275:104.PubMedCrossRefGoogle Scholar
  17. 17.
    Petes, P. D. (1980). Ann. Rev. Biochem. 49:845.PubMedCrossRefGoogle Scholar
  18. 18.
    Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G., and Hall, B. D. (1982). Nature 298:347.PubMedCrossRefGoogle Scholar
  19. 19.
    Maitra, P. K. and Lobo, Z. (1971). J. Biol. Chem. 246:489.PubMedGoogle Scholar
  20. 20.
    Urdea, M. S., Merryweather, J. P., Mullenbach, G. T., Coit, D., Heberlein, U., Valenzuela, P., and Barr, P. J. (Submitted for publication.).Google Scholar
  21. 21.
    Gerin, J. L., Purcell, R. H., Hoggan, M. D., Holland, P. V., and Chanock, R. M. (1969). J. Virol. 4:763.PubMedGoogle Scholar
  22. 22.
    Gerin, J. L., Holland, P. V., and Purcell, R. H. (1971). Virology 7:569.Google Scholar
  23. 23.
    Macnab, G. M., Alexander, J. J., Letcasas, G., Bey, E. M., and Urbanowicz, J. M. (1976). Br. J. Cancer 34:509.PubMedCrossRefGoogle Scholar
  24. 24.
    Gluzman, Y. (1981). Cell 23:175.PubMedCrossRefGoogle Scholar
  25. 25.
    Moriarty, A. M., Hoyer, B. H., Shih, J. W., Gerin, J. L., and Hammer, D. H. (1981). Proc. Natl. Acad. Sci. USA 78:2606.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu, C. C., Yausura, D., and Levinson, A. D. (1982). DNA 1:213.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Pablo Valenzuela
    • 1
  • Paulina Bull
    • 1
  • Doris Coit
    • 1
  • Brian Craine
    • 1
  • Robert Hallewell
    • 1
  • Ulrike Heberlein
    • 1
  • Orgad Laub
    • 1
  • Frank Masiarz
    • 1
  • Angelica Medina
    • 1
  • Steve Rosenberg
    • 1
  1. 1.Chiron Research LaboratoriesChiron CorporationEmeryvilleUSA

Personalised recommendations