Hepatitis B pp 189-194 | Cite as

Newly Licensed Hepatitis B Vaccine

  • Robert J. Gerety


The recently licensed subunit hepatitis B vaccine (HEPTAVAX-B) is unique among vaccines in that it is manufactured solely from human plasma obtained from asymptomatic individuals with chronic hepatitis B. Plasma from donors selected for manufacturing this vaccine contains high concentrations of noninfectious hepatitis B surface antigen (HBsAg) particles and lower concentrations of infectious hepatitis B virus (HBV). The ratio of HBsAg to HBV can be as great as 10,000:1 (1). From the starting plasma, 22 nm spherical HBsAg particles are separated from HBV by ultracentrifugation. The 22 nm particles are then further purified by digestion with pepsin followed by the addition of 8M urea. Finally, the vaccine is treated with formaldehyde.


Newcastle Disease Virus Acquire Immune Deficiency Syndrome Infectious Bronchitis Virus Homosexual Male Hemophilic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gerety, R. J., Tabor, E., Purcell, R. H., et al. (1979). Summary of an international workshop on hepatitis B vaccines. J. Infect. Dis. 140:642–648.PubMedCrossRefGoogle Scholar
  2. 2.
    Code of Federal Regulations, part 21, section 640. Government Printing Office, 1979.Google Scholar
  3. 3.
    FDA Guidelines: Clarification of Guidelines for Plasmapheresis of HBsAg Reactive Donors. Bethesda, MD, Food and Drug Administration, March 1981.Google Scholar
  4. 4.
    Hilleman, M. R., Buynak, E. B., McAleer, W. M., et al. (1982). Hepatitis A and hepatitis B vaccines, in Viral Hepatitis, 1981 International Symposium, W. Szmuness, H. J. Alter and J. E. Maynard, eds., Franklin Institute Press, Philadelphia, pp. 385–397.Google Scholar
  5. 5.
    Tabor, E., Buynak, E., Smallwood, L. A., et al. Inactivation of hepatitis B virus by three methods: Treatment with pepsin, urea, or formalin. J. Med. Virol., in press.Google Scholar
  6. 6.
    Buynak, E. B., Roehm, R. R., Tytell, A. A., et al. (1976). Development and chimpanzee testing of a vaccine against human hepatitis B. Proc. Soc.Exp. Biol. Med. 151:694–700.PubMedCrossRefGoogle Scholar
  7. 7.
    Hilleman, M. R., Buynak, E. B., Roehm, R. R., et al. (1975). Purified and inactivated human hepatitis B vaccine: Progress report. Am. J. Med. Sci. 270:401–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunter, G. D., Gibbons, R. A., Kimberlin, R. H., et al. (1969). Further studies of the infectivity and stability of extracts and homogenates derived from scrapie affected mouse brains. J. Comp. Pathol. 79:101–108.PubMedCrossRefGoogle Scholar
  9. 9.
    Tabor, E. and Gerety, R. J. (1980). Inactivation of an agent of human non-A, non-B hepatitis by formalin. J. Infect. Dis. 142:767–770.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshizawa, H., Itoh, Y., Iwakiri, S., et al. (1982). Non-A, non-B (type 1) hepatitis agent capable of inducing tubular ultrastructures in the hepatocyte cytoplasm of chimpanzees: Inactivation by formalin and heat. Gastroenterology 82:502–506.PubMedGoogle Scholar
  11. 11.
    Szmuness, W., Stevens, C. E., Harley, E. J., et al. (1980). Hepatitis B vaccine: Demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States. N. Engl. J. Med. 303:833–841.PubMedCrossRefGoogle Scholar
  12. 12.
    Francis, D. P., Hadler, S. C., Thompson, S. E., et al. (1982). The prevention of hepatitis B with vaccine: Report of the CDC multi-center efficacy trial among homosexual men. Ann. Intern. Med. 97:362–366.PubMedCrossRefGoogle Scholar
  13. 13.
    Hepatitis B virus vaccine safety: Report on an inter-agency group. (1982). MMWR 31:465–467.Google Scholar
  14. 14.
    Centers for Disease Control Special Report: Epidemiologic aspects of the current outbreak of Kaposi’s sarcoma and opportunistic infection. (1982). N. Engl. J. Med. 306:248–252.Google Scholar
  15. 15.
    Safai, B. and Good, R. A. (1981). Kaposi’s sarcoma: A review and recent developments. CA 31:2–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Drew, W. L., Conant, M. A., Miner, R. C., et al. (1982). Cytomegalovirus and Kaposi’s sarcoma in young homosexual men. Lancet 2:125–127.PubMedCrossRefGoogle Scholar
  17. 17.
    Masur, H., Michelis, M. A., Greene, J. B., et al. (1981). An outbreak of community-acquired Pneumocystis carinii pneumonia: Initial manifestation of cellular immune dysfunction. N. Engl. J. Med. 305:1431–1438.PubMedCrossRefGoogle Scholar
  18. 18.
    Friedman-Kien, A. E., Laubenstein, L. J., Rubinstein, P., et al. (1982). Disseminated Kaposi’s sarcoma in homosexual men. Ann. Intern. Med. 96:693–700.PubMedCrossRefGoogle Scholar
  19. 19.
    Mildvan, D., Mathur, U., Enlow, R. W., et al. (1982). Opportunistic infection and immune deficiency in homosexual men. Ann. Intern. Med. 96:700–704.PubMedCrossRefGoogle Scholar
  20. 20.
    Pneumocystis carinii pneumonia among persons with hemophilia A. (1982). MMWR 31:365–367.Google Scholar
  21. 21.
    Tabor, E. (1982). Infectious Complications of Blood Transfusion, Academic Press Inc., New York.Google Scholar
  22. 22.
    Krugman, S. (1982). The newly licensed hepatitis B vaccine: Characteristics and indications for use. JAMA 247:2012–2015.PubMedCrossRefGoogle Scholar
  23. 23.
    Inactivated hepatitis B virus vaccine. (1982). MMWR 31: 318–328.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Robert J. Gerety
    • 1
  1. 1.Office of BiologicsNational Center for Drugs and Biologics Food and Drug AdministrationBethesdaUSA

Personalised recommendations