Dispersion versus Absorption (DISPA): Hilbert Transforms in Spectral Line Shape Analysis

  • Alan G. Marshall

Abstract

Chapter 1 describes the origin and shape of a hypothetical spectral absorption signal arising from a single driven oscillator with a single natural frequency and a single relaxation time. Experimental spectra, on the other hand, often exhibit signals composed of a sum of two or more peaks of different natural frequencies and/or line widths. Most generally, one can distinguish between a superposition of lines of different position (Fig. 1a) and a superposition of lines of different width (Fig. 1b).

Keywords

Electron Spin Resonance Line Shape Lorentzian Line Lorentzian Line Shape Reference Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marshall, A. G. 1981, in “Physical Methods of Modern Analytical Chemistry,” Vol. 3., ed. Kuwana, T., Academic Press, N. Y., in press.Google Scholar
  2. 2.
    Bartholdi, E., and Ernst, R. R. 1973, J. Magn. Reson. 11, 9.Google Scholar
  3. 3.
    Herring, F. G., Marshall, A. G., Phillips, P. S., and Roe, D. C. 1980, J. Magn. Reson. 37, 293–303.Google Scholar
  4. 4.
    Marshall, A. G., and Roe, D. C. 1978, Anal. Chem. 50, 756–763.CrossRefGoogle Scholar
  5. 5.
    Cole, K. S., and Cole, R. H. 1941, J. Chem. Phys. 9, 341.CrossRefGoogle Scholar
  6. 6.
    Marshall, A. G. 1978, Biophysical Chemistry: Principles, Techniques, and Applications, Wiley, N. Y., Chapters 13-14.Google Scholar
  7. 7.
    Salefran, J. L., and Bottreau, A. M. 1977, J. Chem. Phys 67, 1909–1917.CrossRefGoogle Scholar
  8. 8.
    Colonomos, P., and Gordon, R. G. 1979, J. Chem. Phys. 71 1159–1166.CrossRefGoogle Scholar
  9. 9.
    Marshall, A. G. 1979, J. Phys. Chem. 83, 521–524.CrossRefGoogle Scholar
  10. 10.
    Marshall, A. G., and Roe, D. C. 1979, ”J. Magn. Reson. 33, 551–557.Google Scholar
  11. 11.
    Marshall, A. G., and Bruce, R. E. 1980, J. Magn. Reson. 39, 47–54.Google Scholar
  12. 12.
    Slichter, C. P. 1978, “Principles of Magnetic Resonance,” 2nd ed., Springer-Verlag, Berlin, pp. 47–50.CrossRefGoogle Scholar
  13. 13.
    Champeney, D. C. 1973, “Fourier Transforms and their Physical Applications,” Academic Press, London, pp. 244–246.Google Scholar
  14. 14.
    Bracewell, R. 1965, “The Fourier Transform and Its Applications,” McGraw-Hill, New York, pp. 267–272.Google Scholar
  15. 15.
    Cooley, J. W., and Tukey, J. W. 1965, Math. Comp. 19, 297.CrossRefGoogle Scholar
  16. 16.
    Squire, W. 1976, Int. J. Numeric. Methods Eng. 10, 478.CrossRefGoogle Scholar
  17. 17.
    Bruce, R. E., and Marshall, A. G. 1980, J. Phys. Chem. 84, 1372–1375.CrossRefGoogle Scholar
  18. 18.
    Cole, R. H. 1955, J. Chem. Phys. 23, 493–499.CrossRefGoogle Scholar
  19. 19.
    Roe, D. C, Marshall, A. G., and Smallcombe, S. H. 1978, Anal. Chem. 50, 764–767.CrossRefGoogle Scholar
  20. 20.
    Allerhand, A., and Gutowsky, H. S. 1964, J. Chem. Phys. 41 2115.CrossRefGoogle Scholar
  21. 21.
    Tritton, T. R. 1980, FEBS Lett. 120, 141–144.CrossRefGoogle Scholar
  22. 22.
    Hagen, D. S., Weiner, J. H., and Sykes, B. D. 1979, Biochemistry 18, 2007.CrossRefGoogle Scholar
  23. 23.
    Poole, C. P., Jr. 1967, “Electron Spin Resonance,” InterScience, New York, Chapter 10.Google Scholar
  24. 24.
    Herring, F. G. 1981, private communication.Google Scholar
  25. 25.
    Werbelow, L. G., and Marshall, A. G. 1981, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Alan G. Marshall
    • 1
  1. 1.Departments of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations